Comparative Study of Interferon-γ Production by *Toxoplasma gondii*-infected B Lymphoma Cell-specific CD8⁺ CTL and *Toxoplasma gondii*-infected Melanoma Cell-specific CD4⁺ CTL

FUMIE AOSAI¹⁾, TIAN-HUI YANG¹⁾, KAZUMI NOROSE²⁾, NA HE¹⁾, MASAKATSU UEDA¹⁾ AND AKIHIKO YANO¹⁾

¹⁾Department of Medical Zoology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852 Japan. ²⁾Department of Ophtalmology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390 Japan. (Accepted May 16, 1995)

Abstract

Two types of Toxoplasma gondii (T.gondii)-infected cell-specific cytotoxic T lymphocyte (CTL) lines have been established from peripheral blood leukocytes (PBL) of a patient with chronic toxoplasmosis. One type is $CD8^+$ CTL line specific for *T.gondii*-infected B lymphoma cells in association with human leukocyte antigens (HLA)-A2 molecules and the other type is CD4⁺ CTL line specific for T. gondii-infected melanoma cells in association with HLA-DR molecules. Both CD8⁺ CTL and $CD4^+$ CTL lines specific for T.gondii-infected cells produced equally high levels of interferon- γ (IFN- γ) upon the antigen-specific stimulation. The surface expression of HLA-DR molecules of *T.gondii*-infected melanoma target cells but not that of *T.gondii*-infected B lymphoma target cells, was dose-dependently up-regulated by the exogenous human recombinant IFN-y (rIFN- γ). Further, CD4⁺ CTL showed a markedly enhanced cytotoxicity against *T.gondii*-infected melanoma that was co-cultured with rIFN-y while the lytic activity of CD8+CTL against rIFN-y treated T.gondiiinfected B lymphoma was not enhanced. Interestingly, the expression of intercellular adhesion molecule (ICAM-1) of T.gondii-infected melanoma, but not that of T.gondii-infected B lymphoma, was augmented by the treatment with rIFN- γ , indicating that ICAM-1 might be a possible molecule participating in the enhanced cytotoxicity of CD4⁺ CTL against rIFN- γ treated T.gondii-infected melanoma. The biological function of secreted IFN-γ from CD8⁺ CTL or CD4⁺ CTL was comparatively discussed.

Key words: Toxoplasma gondii-infection; antigen presentation; interferon-γ; CD8⁺ CTL; CD4⁺ CTL.

Introduction

Human antigen-presenting cells (APC) infected by the intracellular parasitic protozoan *T.gondii* are capable of presenting *T.gondii*-infected cell-specific antigens to HLA class I- and class II-restricted T cells (Y ano *et al.*, 1989). We have already reported the establishment of two types of CTL lines specific for *T.gondii*-infected cells derived from PBL of a patient with chronic toxoplasmosis. One is HLA-A2

molecule-restricted CD8+ CTL line which was induced by the stimulation with T.gondii-infected B lymphoma. To CD8⁺ CTL, T.gondii-infected cellspecific antigen was shown to be presented by T.gondii-infected B lymphoma through the endogenous antigen presenting pathway. Electron microscopic analysis of the infected APC revealed that the outer membrane of *T.gondii* fused with some parts of the vacuolar membranes building channellike structures in T.gondii-infected APC. The direct entry of T.gondii antigen into the cytoplasm was detected by cytofluoromeric studies (Yano et al., 1992). Naturally processed peptides recognizable by T.gondii-infected cell-specific CD8⁺ CTL were isolated from HLA-A2 molecules of T.gondii-infected B lymphoma (Aosai et al., 1994). The other one is HLA-DR molecule-restricted CD4+ CTL line which

Correspondence: Akihiko Yano

青才文江¹,楊 天慧¹,野呂瀬一美²,何 娜¹, 上田正勝¹,矢野明彦¹(¹長崎大学医学部医動物学

教室, ²信州大学医学部眼科学教室)

This work was supported in part by a Grant-in Aid for Scientific Research from the Ministries of Education and National Health of Japan.

was induced by the stimulation with *T.gondii*-infected melanoma. Thus, not only B lymphoma but also melanoma works as APC in antigen presentation of *T.gondii*-infected cell-specific antigens for CTL in association with HLA molecules. We have recently postulated a hypothesis that both *T.gondii*infected melanocytes (as APC) and CD4⁺ CTL participate in the pathogenesis of toxoplasmic retinochoroiditis (Yang *et al.*, 1995).

IFN- γ has been shown to be a major protective cytokine in immunity to T.gondii (Chinchilla and Frenkel, 1984; Suzuki et al., 1988; Suzuki and Remington, 1990; Gazzineli et al., 1992). CD8+ CTL or natural killer (NK) cells have been thought as major sources of IFN-y production (Suzuki and Remington, 1990; Gazzinelli et al., 1991; Denkers et al., 1994; Sher et al., 1993), although the participation of CD4⁺T cells or CD4⁻CD8⁻ cells were also reported (Gazzinelli et al., 1991; Gazzinelli et al., 1992; Kasper and Khan, 1993; Johnson et al., 1993). We have found that both CD8+ CTL and CD4+ CTL lines specific for T.gondii-infected cells produced equally high amounts of IFN-y upon the antigen specific stimulation. The biological effects of IFNγproduction by CD8⁺ CTL and CD4⁺ CTL lines are comparatively examined.

Materials and Methods

T.gondii-infected cell-specific CTL lines

CD8⁺ CTL lines (*T.gondii* (RH strain)-infected human B lymphoma-specific, HLA-A2-restricted) established from PBL of a patient with chronic toxoplasmosis (Aosai *et al.*, 1994) were maintained by weekly *in vitro* stimulation with *T.gondii*-infected human B lymphoma ARH-77 (ARH) cells or EBV-Ya cells (Epstain Barr Virus-transformed autologous B lymphoma; a kind supply from Dr. K. Yamashita) in IMDM tissue culture medium supplemented with 5% FCS, 5×10^{-5} M 2-mercaptoethanol, penicilline-streptomycin, and 10 U/ml human recombinant IL-2 (rIL-2) (Shionogi Pharm. Co., Osaka, Japan).

CD4⁺ CTL lines (*T.gondii*-infected human melanoma-specific, HLA-DR-restricted) established from PBL of the same patient (Yang *et al.*, 1995) were maintained by weekly *in vitro* stimulation with *T.gondii*-infected human melanoma, SK-MEL28

(P36) cells which shared HLA-DR4 molecules with the patient. Preparation of *T.gondii*-infected cells was done as previously described (Yano *et al.*, 1989). Tenets of the Declaration of Helshinki were followed. Informed consent was obtained from the patient after the nature of the procedure had been explained.

Assay of IFN- γ production

Two × 10⁶ CD8⁺ or CD4⁺ CTL were cultured with 2×10⁴ of either *T.gondii*-infected or uninfected stimulators cells (CD8⁺ CTL were cultured with either *T.gondii*-infected or uninfected ARH or EBV-Ya cells. CD4⁺ CTL were cultured with either *T.gondii*-infected or uninfected P36 cells) in a 24well tissue culture plate in IMDM without rIL-2. Supernatants were harvested 48 hours later and IFN- γ activities in the supernatants were assayed by ELISA (Otsuka Pharm. Co., Tokyo, Japan).

Cell treatment with IFN- γ and flow cytometric analysis of surface expression of HLA, LFA-1 or ICAM-1 molecules

To test the effects of human recombinant IFN-y (rIFN- γ) on the surface expression of the HLA molecules of target cells, T.gondii-infected or uninfected ARH (or EBV-Ya) or P36 cells were cultured with or without 60 ng/ml human rIFN-y for 24 hours. The cells were then incubated either with anti-HLA-DR monoclonal antibody (mAb) B33.1.3 (IgG2a; a kind gift of Dr. P. Bice, Jefferson Cancer Institute, PA, USA) or anti-HLA-A,B,C mAb W6/ 32 (IgG2a; purchased from American Type Culture Collection (ATCC)) for 30 minutes on ice and were stained with second-layer fluorescein (FITC)-conjugated goat anti-mouse immunoglobulins (Igs) for another 30 minutes on ice. The FITC intensity of the stained cells was analysed with a FACScan (Becton Dickinson, Mountain View, CA, USA). For control staining, cells were exposed to second-layer antibodies only.

The effects of rIFN- γ on the surface expression of LFA-1 and ICAM-1 molecules of target cells were also examined by incubating the rIFN- γ treated or untreated target cells (*T.gondii*-infected or uninfected ARH (or EBV-Ya) or P36 cells) either with anti-human LFA-1 α mAb TS1/22.1.1.13 (CD11a) (IgG1; purchased from ATCC), anti-human LFA-1 β mAb TS1/18.1.2.11.4 (CD18) (IgG1; purchased from ATCC), or anti-human ICAM-1 mAb 84-H-10 (CD54) (IgG1; Medical Biology Laboratories, Nagoya, Japan) for 30 minutes on ice followed by the staining with second-layer FITCconjugated goat anti-mouse Igs for another 30 minutes on ice.

CTL assay

A CTL assay was performed as described previously (Yano *et al.*, 1989; Aosai *et al.*, 1991). To test the effects of IFN- γ on CTL activity, target cells were preincubated with various concentration (0.6 ng/ml, 6 ng/ml and 60 ng/ml) of rIFN- γ for 24 hours. The preincubation time of target cells with rIFN- γ was determined following the data previous described (Yang *et al.*, 1995). The same concentration of rIFN- γ was included in cultures through the ⁵¹Crlabeling and CTL assay. 5×10³ ⁵¹Cr-labeled target cells (either rIFN- γ treated or untreated) were cultured with the effector CTL at the indicated effector/ target ratio in a round-bottomed 96-well plate at a total volume of 200 μ l per well. After 4 hours incubation, 100 μ l of each supernatant fraction was collected and the percent specific lysis was determined using the equation: [(experimental release – spontaneous release)/(maximal release – spontaneous release)]×100. Experiments were performed in duplicate or triplicate.

Results

IFN-γproduction by T.gondii-infected cell-specific CD8⁺ CTL or CD4⁺ CTL

As IFN- γ has been shown to be a major protective cytokine in immunity to *T.gondii*, IFN- γ production by *T.gondii*-infected cell-specific CD8⁺ CTL or CD4⁺ CTL line was comparatively examined. Both CD8⁺ CTL and CD4⁺ CTL lines produced a high level of IFN- γ when cultured with *T.gondii*-infected B lymphoma (ARH or EBV-Ya cells) or melanoma (P36 cells) respectively (Fig. 1). The IFN- γ production from CD8⁺ CTL or CD4⁺ CTL was equal and was antigen-specific, because uninfected B lymphoma or melanoma failed to stimulate CTL for production of IFN- γ . Although CD4⁺ CTL by itself

Fig. 1 Interferon-γ production of *T.gondii*-infected cell-specific CD8⁺ or CD4⁺ CTL. CD8⁺ CTL (open column) was cultured with either *T.gondii*-infected or uninfected B lymphoma (ARH or EBV-Ya cells). CD4⁺ CTL (solid column) was cultured with either *T.gondii*-infected or uninfected melanoma (P36 cells). After the culture at 37°C for 48 hours, supernatants were harvested and assayed for IFN-γ production by ELISA. Supernatants of either stimulator alone or CTL alone were tested as controls.

secreted low level of IFN- γ , the amount of IFN- γ production was enhanced by antigen-specific stimulation. Neither the culture with CD8⁺ CTL alone nor the culture with the stimulator alone produced IFN- γ .

Effects of IFN- γ on HLA molecule expression of B lymphoma and melanoma cells

T.gondii-infected B lymphoma (ARH or EBV-Ya cells) or melanoma (P36 cells) was cultured in the absence or in the presence of 60 ng/ml human rIFN- γ for 24 hours and the effects of IFN- γ treatment on the HLA molecule expression were comparatively analysed. The treatment with rIFN- γ upregulated the surface expression of HLA-DR molecules of melanoma, whereas the expression of HLA-DR molecules of B lymphoma was not affected (Fig. 2B and D). The expression level of HLA class I molecules of both lines was not augmented by the treatment with rIFN- γ (Fig. 2A and C). The expression levels of HLA-A,B,C and HLA-DR molecules by both *T.gondii*-infected and uninfected B lymphoma or melanoma were similar (data not shown).

Enhancement of CD4⁺ CTL-mediated but not CD8⁺ CTL-mediated lysis against T.gondii-infected target cells by IFN- γ

T.gondii-infected B lymphoma (ARH or EBV-Ya cells) or melanoma (P36 cells) was treated with various concentration of rIFN- γ for 24 hours and was used as a target of the CTL assay for CD8⁺ CTL or CD4⁺ CTL to examine the effects of rIFN- γ on the targeting activities. CD4⁺ CTL showed enhanced cytotoxicity against *T.gondii*-infected P36 cells that were co-cultured with rIFN- γ . The CTL activity against *T.gondii*-infected P36 cells was enhanced by rIFN- γ dose-dependently. On the other hand, the lytic activity of CD8⁺ CTL against rIFN- γ treated B lymphoma was not augmented (Fig. 3). Thus, the

Log Fluorescence Intensity

Fig. 2 Effects of IFN-γon HLA molecule expression of B lymphoma or melanoma cells. *T.gondii*-infected B lymphoma (EBV-Ya cells) or lymphoma (P36 cells) were incubated with or without 60 ng/ml of human rIFN-γ for 24 hours. After incubation, the cells were harvested and stained with either anti-HLA-A, B, C mAb (A and C) or anti-HLA-DR mAb (B and D) followed by a staining with second-layer FITC-conjugated goat anti-mouse immunoglobulins (Igs). Samples stained only with FITC-conjugated goat anti-mouse Igs were used as negative control (N.C.). The intensity of FITC was analysed by FACScan.

Fig. 3 Dose-dependent enhancement of CD4⁺, but not CD8⁺ CTL lysis against IFN-γtreated *T.gondii*-infected target cells. Lytic activity of CD8⁺ CTL against IFN-γtreated *T.gondii*-infected B lymphoma (ARH or EBV-Ya cells) (open circle) and lytic activity of CD4⁺ CTL against IFN-γ treated *T.gondii*-infected melanoma (P36 cells) (closed circle) were comparatively examined by an ordinary 4 hours CTL assay. Preparation of target cells was carried out as described in Materials and Methods. The effector to target ratio used for CD8⁺ or CD4⁺ CTL lysis was 15:1 or 30:1, respectively.

up-regulation of the surface HLA-DR expression of P36 cells by IFN- γ seemed to induce the augmentation of the targeting activities (i.e. antigen presentation) of *T.gondii*-infected P36 cells to CD4⁺ CTL.

Effects of IFN- γ on LFA-1 or ICAM-1 molecule expression of B lymphoma or melanoma cells

To test whether some accessory molecules participate or not in different cytotoxicities of CD8⁺ CTL and CD4⁺ CTL against rIFN- γ treated *T.gondii*infected target cells, the surface expression of either LFA-1 α , LFA-1 β or ICAM-1 molecule of B lymphoma (ARH or EBV-Ya cells) or melanoma (P36 cells) treated with or without rIFN- γ (60 ng/ml for 24 hours) was comparatively analysed. The treatment with rIFN- γ up-regulated the ICAM-1 expression of *T.gondii*-infected melanoma but not that of B lymphoma (Fig. 4C and F), suggesting the participation of the ICAM-1 molecules in the enhanced targeting activity of rIFN- γ treated *T.gondii*-infected P36 cells. The surface expression of LFA-1 molecules of either B lymphoma or melanoma line was not affected by the treatment with rIFN- γ (Fig. 4A, B, D and E). The expression levels of LFA-1 α , LFA-1 β or ICAM-1 molecules of both *T.gondii*-infected and uninfected B lymphoma or melanoma were similar (data not shown).

Discussion

We have reported the existence of two types of T.gondii-infected cell-specific CTL induced from PBL of a patient with chronic toxoplasmosis. CD8⁺ CTL lines generated by in vitro stimulation of the patient PBL with T.gondii-infected B lymphoma (ARH or EBV-Yacells) recognize T.gondii-infected cell-specific antigens in association with HLA-A2 molecules (Yano et al., 1989; Aosai et al., 1994). On the other hand, CD4⁺ CTL lines established from PBL of the same patient by in vitro stimulation with T.gondii-infected melanoma (P36 cells) recognize T.gondii-infected cell-specific antigens in association with HLA-DR molecules (Yang et al., 1995). It is reasonable that T.gondii-infected ARH cells, which share only HLA-A2 and -Cw4 molecules with the patient, induced only CD8+ CTL. However, when T.gondii-infected autologous B lymphoma, EBV-Ya cells, was used as APC, only CD8⁺ CTL were induced (data not shown). Also we failed to induce HLA-class II restricted CD4+ CTL when another T.gondii-infected B lymphoma (EBV-Wa cells) that shared only HLA-DR4 molecules with the patient was used as APC (data not shown). Thus, some preference in inducing CD8⁺ CTL or CD4⁺ CTL may exist according to the APC types, although further studies need to be done including a limiting dilution analysis to see the precursor frequencies of CD8⁺ CTL or CD4⁺ CTL by the stimulation with T.gondii-infected EBV-Ya cells or an analysis by using the HLA-class I and class II matched melanoma as APC. T.gondii-infected melanoma-specific CD4+ CTL also lysed T.gondii-infected autologous B lymphoma EBV-Ya cells (Yang et al., 1995), indicating that T.gondii-infected B lymphoma expressed T.gondii antigen in association with HLA-DR molecules which were recognizable by the T.gondiiinfected melanoma-specific CD4⁺ CTL. Together, it could be speculated that the number of HLA-DR molecules of T.gondii-infected B lymphoma presenting T.gondii epitopes was not enough to induce

Fig. 4 Effects of IFN- γ on LFA-1 or ICAM-1 molecule expression of B lymphoma or melanoma cells. *T.gondii*-infected B lymphoma (EBV-Ya cells) or melanoma (P36 cells) were incubated with or without 60 ng/ml of human rIFN- γ for 24 hours. After incubation, the cells were harvested and stained with either anti-LFA-1 α mAb (TS1/22.1.1.13) (A and D), anti-LFA-1 β mAb (TS1/18.1.2.11.4) (B and E) or anti-ICAM-1 mAb (84.H.10) (C and F) followed by a staining with second-layer FITC-conjugated goat anti-mouse immunoglobulins (Igs). Samples stained only with FITC-conjugated goat anti-mouse Igs were used as negative control (N.C.). The intensity of FITC was analysed by FACScan.

CD4⁺ CTL but was enough to be recognized by the induced CD4⁺ CTL. Alternatively, B lymphoma may lack some accessory molecules or some types of lymphokines for inducing *T.gondii*-infected cell-specific CD4⁺ CTL from their precursor cells.

IFN-γ has been reported to play a key role in protection against acute or reactivate chronic infection with *T.gondii*. As a major source of IFN-γ, CD8⁺CTL (Suzuki and Remington, 1990; Gazzinelli *et al.*, 1991; Denkers *et al.*, 1994) or NK cells (Sher *et al.*, 1993) have been reported. Although the synergistic participation of CD4⁺ T cells to IFN-γ production by CD8⁺ CTL (Gazzinelli *et al.*, 1991; Gazzinelli *et al.*, 1992; Kasper and Khan, 1993) or the contribution of CD4⁻CD8⁻ cells (Johnson *et al.*, 1993) have been also shown, adoptive cell transfer experiments have revealed that CD8⁺ T cells but not CD4⁺ T cells (even though equal quantity of IFN-γ was secreted by CD4⁺ T cells), worked in protection probably through the production of IFN-γ (Suzuki and Remington, 1990; Khan et al., 1994; Gazzinelli et al., 1992). Thus, the IFN- γ produced by CD8⁺ CTL has been thought to be a major cytokine that works in protection. We have herein reported that both CD8⁺ CTL and CD4⁺ CTL secreted equally high levels of IFN-y when they were stimulated with T.gondii-infected B lymphoma or melanoma, respectively. Although CD4+ CTL alone produced a small amount of IFN-y, the amount of IFN-y production was definitively augmented by culturing CD4+ CTL with T.gondii-infected melanoma. The IFN-y production by CD8⁺ CTL or CD4⁺ CTL was partially inhibited by the anti-HLA-class I mAb or anti-HLA-DR mAb, respectively (data not shown). The blocking effects of the anti-HLA-class I mAb or anti-HLA-DR mAb on the IFN-y production by CD8⁺ CTL or CD4⁺ CTL was much less than those on the CTL activities against T.gondii-infected target cells. One may speculate that other mechanisms, such as antigen presentation of superantigens, in IFN- γ production by CD8⁺ CTL or CD4⁺ CTL may participate (Denkers *et al.*, 1994).

The targeting activity of T.gondii-infected melanoma to CD4⁺ CTL was easily enhanced by rIFN- γ , while that of *T.gondii*-infected B lymphoma to CD8⁺ CTL was not enhanced. As the level of surface HLA-DR expression of T.gondii-infected melanoma (even after rIFN-y treatment) was much less than that of T.gondii-infected B lymphoma, it could be speculated that enough numbers of surface HLA-DR molecules of T.gondii-infected melanoma expressed T.gondii epitopes. As we have hypothesised (Yang et al., 1995), the up-regulation of HLA-DR molecule expression induced by IFN-γ (produced from likely CD8⁺ CTL or NK at the initial stage) would induce the efficient binding of T.gondii peptide fragments to HLA-DR molecules in infected P36 cells that resulted in the efficient antigen presentation and the enhanced cytolysis of infected target cells by CD4⁺ CTL. On the other hand, surface HLA-A, B, C or HLA-DR molecule expression of B lymphoma was not augmented by the treatment with exogenous human rIFN-y. It seemed that B lymphoma cells had already expressed the maximal level of HLA molecules (both class I and class II) on their cell surface so that no augmenting effects of HLA expression was detected by rIFN-γ treatment.

The treatment with rIFN- γ augmented the surface ICAM-1 expression of *T.gondii*-infected P36 cells but not that of *T.gondii*-infected B lymphoma cells. The importance of ICAM-1 molecule expression on the target cells in the cytotoxicity has been reported (Dohlsten *et al.*, 1991, Nowak *et al.*, 1991, Chong *et al.*, 1994). Thus, the up-regulation of surface ICAM-1 of *T.gondii*-infected P36 cells by the treatment with rIFN- γ would suggest the contribution of ICAM-1 in the enhanced targeting activity of infected P36 cells treated with rIFN- γ .

We have also analysed the direct binding of human rIFN- γ to *T.gondii* tachyzoites, *T.gondii*infected B lymphoma (ARH and EBV-Ya cells) or *T.gondii*-infected melanoma (P36 cells) by using a biotinylated human rIFN- γ followed by a staining with streptavidin-FITC. Human rIFN- γ directly bound to the surface of both *T.gondii*-infected melanoma (Yang *et al.*, 1995) and B lymphoma (data not shown) but not to the surface of *T.gondii* tachyzoites. Also the surface expression of IFN-γ receptors on both T.gondii-infected melanoma (Yang et al., 1995) and B lymphoma (data not shown) but not on T.gondii tachyzoites was confirmed by a staining with anti-IFN-y receptor mAb. Thus, the parasiticidal activity of IFN-γ in host resistance to T.gondii-infection was indirect. The indirect function of IFN- γ in the protection would be agreed with the hypothesis that the extracellular T.gondii tachyzoites released from the T.gondii-infected cells by a CTL attack would be transmitted to and destroyed by activated phagocytes under the influence of inflammatory stimuli and T-cell lymphokines (Kaufmann, 1988). Recently, Yong et al. (1994) reported that 5-lipoxygenase (e.g., leukotriene[LT] B_4 , LTC₄) arachidonic acid products were released from macrophages by the treatment with IFN- γ and the released LTB4 induced intracellular killing of ingested T.gondii by non-IFN-γtreated macrophages. More precise mechanisms of anti-T.gondii prophylactic immunity and immunopathogenesis of IFN-y, CD8⁺ CTL and CD4⁺ CTL in T.gondii infection remain to be elucidated.

Acknowledgement

The authors thank Daiichi Pharm. Co., Tokyo, Shionogi Pharm. Co., Osaka and Ohtsuka Pharm. Co., Ohsaka for their generous gifts of human rIFN- γ and ELISA assay plates.

References

- Aosai, F., Yang, T.-H., Ueda, M. and Yano, A. (1994): Isolation of naturally processed peptides from a *Toxoplasma gondii*-infected human B lymphoma cell line that are recognized by cytotoxic T lymphocytes. J. Parasitol., 80, 260–266.
- Aosai, F., Öhlen, C., Ljunggren, H.-G., Höglund, P., Franksson, L., Ploegh, H., Townsend, A., Kärre, K. and Stauss, H. J. (1991): Different types of allospecific CTL clones identified by their ability to recognize peptide loading-defective target cells. Eur. J. Immunol., 21, 2767–2774.
- Chinchilla, M. and Frenkel, J. K. (1984): Specific mediation of cellular immunity to *Toxoplasma gondii* in somatic cells of mice. Infect. Immun., 46, 862–866.
- Chong, A. S., Boussy, I. A., Jiang, X. L. and Graf, L. H. Jr. (1994): CD54/ICAM-1 is a costimulator of NK cellmediated cytotoxicity. Cell. Immunol., 157, 92–105.
- 5) Denkers, E. Y., Casper, P. and Sher, A. (1994): Toxoplasma gondii possesses a superantigen activity that selectively expands murine T cell receptor V β5-bearing CD8⁺ lymphocytes. J. Exp. Med., 180, 985–994.

- 6) Dohlsten, N., Lando, P. A., Trowsdale, J., Altmann, D., Patarroyo, M., Fischer, H. and Kalland, T. (1991): Role of the adhesion molecule ICAM-1 (CD54) in staphylococcal enterotoxin-mediated cytotoxicity. Eur. J. Immunol., 21, 131–135.
- 7) Gazzinelli, R. T., Hakim, F. T., Hieny, S., Shearer, G. M. and Sher, A. (1991): Synergistic role of CD4⁺ and CD8⁺ T lymphocytes in IFN-γ production and protective immunity induced by an attenuated *Toxoplasma gondii* vaccine. J. Immunol., 146, 286–292.
- Gazzinelli, R., Xu, Y., Hieny, S., Cheever, A. and Sher, A. (1992): Simultaneous depletion of CD4⁺ and CD8⁺ T lymphocytes is required to reactivate chronic infection with *Toxoplasma gondii*. J. Immunol., 149, 175–180.
- Johnson, L. L., VanderVegt, F. P. and Havell, E. A. (1993): Gamma interferon-dependent temporary resistance to acute *Toxoplasma gondii* infection independent of CD4⁺ or CD8⁺ lymphocytes. Infect. Immun., 61, 5174–5180.
- Kasper, L. H. and Khan, I. A. (1993): Role of P30 in host immunity and pathogenesis of *T.gondii* infection. Res. Immunol., 144, 45–48.
- Khan, I. A., Ely, K. H. and Kasper, L. H. (1994): Antigen-specific CD8⁺ T cell clone protects against acute *Toxoplasma gondii* infection in mice. J. Immunol., 152, 1856–1860.
- Kaufmann, S. H. E. (1988): CD8⁺ T lymphocytes in intracellular microbial infections. Immunol. Today, 9, 168–174.
- 13) Nowak, J., Cohen, E. P. and Graf, L. H. (1991): Cytotoxic activity toward mouse melanoma following immunization of mice with transfected cells expressing a human melanoma-associated antigen. Cancer Immunol., 33, 91–96.

- 14) Sher, A., Oswald, I. P., Hieny, S. and Gazzinelli, R. T. (1993): *Toxoplasma gondii* induces a T-independent IFN-γ response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-α. J. Immunol., 150, 3982–3989.
- 15) Suzuki, Y., Oreillana, M. A., Schreiber, R. D. and Remington, J. S. (1988): Interferon-γ: The major mediator of resistance against *Toxoplasma gondii*. Science, 240, 516–518.
- 16) Suzuki, Y. and Remington, J. S. (1990): The effect of anti-IFN-γ antibody on the protective effect of Lyt-2⁺ immune T cells against toxoplasmosis in mice. J. Immunol., 144, 1954–1956.
- 17) Yang, T. H., Aosai, F., Norose, K., Ueda, M. and Yano, A. (1995): Enhanced cytotoxicity of IFN-γ-producing CD4⁺ cytotoxic T lymphocytes specific for *T.gondii*infected human melanoma cells. J. Immunol., 154, 290– 298.
- 18) Yano, A., Aosai, F., Ohta, M., Hasekura, H., Sugane, K. and Hayashi, S. (1989): Antigen presentation by *Toxoplasma gondii*-infected cells to CD4⁺ proliferative T cells and CD8⁺ cytotoxic cells. J. Parasitol., 75, 411– 416.
- 19) Yano, A., Ohno, S., Norose, K., Baba, T., Yamashita, K., Aosai, F. and Segawa, K. (1992): Antigen presentation by *Toxoplasma*-infected cells: Antigen entry through cell membrane fusion. Int. Arch. Allergy Immunol., 98, 13–17.
- 20) Yong, E. C., Chi, E. Y. and Henderson, Jr., W. R. (1994): *Toxoplasma gondii* alters eicosanoid release by human mononuclear phagocytes: Role of leukotrienes in interferon γ-induced antitoxoplasma activity. J. Exp. Med., 180, 1637–1648.

í