Toxoplasma の細胞質内アクリジン

オレンジ顆粒に関する研究

小 山 力

国立予防衛生研究所寄生虫部

(昭和47年10月31日 受領)

はじめに

Toxoplasma gondii は、哺乳類から鳥類にわたつ てひろく寄生し、医学上、脳水腫や脈絡網膜炎などの疾 患を惹起する病原体として注目されている.

近年,市販豚肉および臓器内から栄養型虫体や,シス ト型虫体が検出され (Jacobs *et al.*, 1960 b;石井ら, 1962), しかもそれらによる経口感染の可能性が指摘さ れるに至つている.

さらに、ごく最近では、*Toxoplasma* は、猫の消化管 壁では、コクシジウムと同じく無性および有性生殖期を 経過し、耐久性の強いオーシストを排泄するという事実 が見出された.この問題は、Hutchison (1965)によつて 追究の端緒がひらかれたのであるが、その後多くの追試 者 (Hutchison *et al.*, 1970; Dubey *et al.*, 1970; Sheffield & Melton, 1970; Frenkel *et al.*, 1970)によ って確認された.現在こうした本虫生活史上の新事実 は、本症防遏方策を根底から考え直さねばならぬことと して深刻な問題をなげかけている.

さて、哺乳類および鳥類全般にひろく本虫の寄生のみ られるのは確かに事実であるが、これらの間における蔓 延状態、感染経路、宿主体内の分布状況などは、的確な 虫体検出法の未開拓の現在、未だ完全には究明されてい ない.そこで、本研究では、簡易かつ正確な虫体検出法 の開発を目的として、近年各分野で画期的寄与をとげて いるアクリジンオレンジ(AO)生体染色一螢光顕微鏡 法を導入して、Toxoplasma 虫体の観察を試みてみた のであるが、まず第一に、同法によつて出現する AO 顆粒の基礎的観察とその発色条件について検討し、次に この検討結果にもとずいて、同法を本原虫の検出に適用 したところ、極めて良好な結果が得られた.さらに、こ の観察を続けていくうちに、AO 顆粒の衰退過程が、 感染能のそれと平行関係にあることが予想されたので、 これを実験的に追究して証明することに成功し,したが つて,この顆粒の消長を観察することによつて,同法は また虫体生死の判別にも用い得ることを知つた.つい で,AO 顆粒の正体を明らかにすることに興味をおぼ え,同上顆粒の生理学的検討に加えて,細胞化学的検討 を重ねて,その性状を追究した結果,顆粒の本態は lysosome 様のものであると考えられた.以上が本研究 の一連の目的と結果であるが,以下その内容について詳 述する.

材料と方法

1. AO 顆粒の基礎的観察とその発色条件の検討.

用いた虫体は、Toxoplasma gondii RH 株感染後3 日目のマウス腹水および各臓器内栄養型と、同 Beverley 株感染後約1カ月のマウス脳内のシスト型である. またシスト内虫体は、機械的にシスト壁をこわし游離さ せて得たものである.使用マウスは、gpc 系雌、生後4 週のもので(小林ら、1959;石井ら、1959)、以下常に このマウスを用いた.

螢光顕微鏡装置は NB 式(日本 BCG)を用いたが,
その概要は、光源(東芝超高圧水銀灯 SHL -100UV),
光源フイルター(イワキ BG 12),接眼フイルター(イワキ FY 4),顕微鏡(Zeiss、集光器 N.A. 1.4)である.
また供試螢光色素はGrübler 製アクリジンオレンジ(AO)である.以後の研究において、常に上述の装置および螢光色素が用いられた.

1) AO 顆粒の基礎的観察

AO 生理食塩水溶液と 虫体材料を混合後螢光鏡検 し たが, この混液は McIlvaine 緩衝液で pH 7.0~7.5に 調整された. なお, その他の 鏡検条件としては 室温下 (24~26°C), AO 終末濃度 1~2万倍などであつた. こ の条件は, 従来の経験から好適と考えられているもので ある (小山ら, 1962). 412

2) AO 顆粒の発色条件の検討

a) 至適 AO 濃度

まず,腹水内虫体を遠沈集虫(2,000 rpm 5分,以下同 じ)して,その一定虫数を一定量の既知濃度の AO 生 理食塩水溶液中に浸漬して,色素量と虫数の関係を調べ た (pH 7.2, AO 終末濃度1万倍,室温下).次に腹水 内栄養型虫体またはシストの生理食塩水浮游液に,各種 濃度になるように AO を加え,pH を McIlvaine 緩衝 液で7.5に補整して螢光鏡検した(小山ら,1962; Robbins & Marcus, 1963).また観察温度は室温であつた.

b) 至適 pH

腹水内栄養型虫体 ま た はシストの 生理食塩水浮游液 に,各種 pH の緩衝液を加えて螢光鏡検した.用いた緩 衝液は McIlvaine と Clark & Lubs である.また,こ の際の AO 濃度は常に 1 万倍とし (Rothstein & Diamond, 1959;小山ら, 1962;牧野, 1964),室温下で観 窓した.

c) 染色時間と感染能の関係

RH 株感染マウス腹水と1万倍 AO 生理食塩水溶液 を1:1に混合,無菌的に室温保存し,経時的にその一部 を観察して染色工合と時間との関係を調べるとともに, AO の虫体に対する毒性をテストするため,他の一部を マウスの腹腔内に接種して感染能の推移を調べた.対照 として1万倍 AO 生理食塩水溶液のかわりに,単なる 生理食塩水溶液を用いたものを置いた.接種虫数は,マウ ス1匹あたり約65万であり,接種にあたり,1匹あたり ペニシリン125単位およびストマイ250 µg を添加した (常松ら.1958).マウス1匹あたりの抗生物質使用量 は、本研究を通して常にこの量を用いた.

2. 感染臓器内虫体の検出

1) 感染マウスの腹水および臓器の蒸溜水処理

虫体として,RH 株感染後3日目のマウスの腹水およ び肝臓内のもの,シストとして Beverley 株感染後1カ 月のマウス脳内のものを用いた.感染臓器を実験材料と する場合には,腹水由来の虫体による表面汚染が考えら れる.これを除くために,虫体が浸透圧による影響を受 け易い性質を利用して,感染臓器および腹水の短時間蒸 溜水浸漬を検討した.脳の場合には腹水内虫体での汚染 はないが,シストおよびシスト内虫体の蒸溜水による影 響を,螢光鏡検によつて検討する目的で,同じく蒸溜水 浸漬をおこなつた.

a) 腹水の場合

感染マウス1匹分の腹水の半量を,100倍容量の蒸溜水 中に,5分間室温浸漬後遠沈,その沈渣を螢光鏡検する とともに、一部をマウス3匹に腹腔内注入し、感染能の 有無を調べた.また同上腹水の残部を,無処理対照群と して、螢光鏡検およびマウス接種をおこなつた.接種虫 数は、実験群,対照群ともにマウス1匹あたり約830万 であつた.

b) 肝臓の場合

感染マウス1匹分の肝臓の半分を,そのまま100倍容 量の蒸溜水中に15分間浸漬後とりだし,生理食塩水を加 えて磨砕液とし,その一部を螢光鏡検するとともに,他 部をマウス3匹に腹腔内注入し,対照として残り半分の 肝臓を蒸溜水処理をおこなわず直ちに磨砕液とし,螢光 鏡検およびマウス接種に供した.接種虫数はマウス1匹 あたり約100万であつた.

c) 脳の場合

感染マウス3匹分の脳を100倍容量の蒸溜水中にその まま浸漬し,15,30,60分の各時間毎に1匹分づつとり だし,生理食塩水を添加して磨砕液とし,一部螢光鏡検 するとともに,他部をマウス3匹に腹腔内注入した.対 照として感染マウス1匹分の脳をそのまま,何等の処置 を加えず磨砕液とし,同様に螢光鏡検およびマウス接種 をおこなった。接種シスト数はマウス1匹あたり約700 であった.また,感染マウス脳3匹分に生理食塩水添 加,磨砕液とし,その³/4を100倍容量の蒸溜水中に浸漬 後3分し,15,30,60分の各時間毎にその一部をとりだ し,遠沈後その沈渣の一部を螢光鏡検するとともに,残 部をマウス3匹に腹腔内注入した.対照としては,最初 の磨砕液の残り¹/4を用いてそのまま何等の処置なしに螢 光鏡検とマウス接種をおこなった.接種シスト数は,マ ウス1匹あたり約500であった.

2) 消化法併用による虫体検出試験

検出率の向上をはかるため,前処置として,まず臓器 組織の消化をおこなつて集虫に努め,その後,AO生体 染色一螢光顕微鏡法による虫体の検出を試みた.

a) 肝臓の場合

感染マウス2匹分の肝臓を,その約100倍容量の蒸溜 水中に15分間浸漬後とりだして,生理食塩水を添加,磨 砕し,ガーゼ2枚で濾過後,その濾液の半量に約20倍容 量の消化液を混じ,37℃ で30分および 60分間消化をお こなつた.消化液の処方は,下記の如く Jacobs *et al.* (1960 a) およびその変法によつた.

ペプシン溶液:

(ペプシン(Difco 1 :	10,000)	1.3g
	食塩		2.5g
	濃塩酸		3.5 ml
	蒸溜水を加えて500 ml	とする	(pH 1.2)

トリプシン溶液:

トリプシン (Merck) 5.0g 生理食塩水を加えて500 ml とする 重曹にて pH 8.2に調整

消化処理にあたつては, KM 式マグネチックスターラ ー (Iwaki, S-1A) を使用して攪拌した. 消化後は, 遠沈して沈渣を集め,生理食塩水で洗浄後,一部を螢光 鏡検,残りをマウス3匹に腹腔内注入した. 濾液の残り 半量は対照として消化処理をおこなわず,そのまま一部 を螢光鏡検,残りをマウス3匹に腹腔内注入した. マウ ス1匹あたりの接種虫数は,約100~200万であつた.

b) 脳の場合

感染マウス脳2匹分に生理食塩水を加えて磨砕液をつ くり、濾過後肝臓の場合と同様一部を消化実験に、残部 を対照群にまわした.マウス1匹あたりの接種シスト数 は1.000~2.000である.他の条件は、全く肝臓の場合と 同じである.

マウスの感染は、マウスの発症致死および虫体の発見 によつて確認したが、マウス接種後1カ月以上生残した ものについては、脳内シストの発見に努めるとともに、 シストの発見されなかつたものについては、さらに色素 試験を実施して感染の有無を確かめた。

3. AO 顆粒と虫体感染能との関係

1) 虫体観察のための灯芯法の応用

AO 顆粒と虫体感染能の関係を正確に把握するために は、虫体の形態,発色色調,AO 顆粒の存否などの詳細 な観察と、虫体数の正確な算定が必要である.しかし、 実際には、(i) 游離虫体は微小で浮動し勝ちであり、油 浸鏡検の際、視野外に逸散し易く、算定、観察ともに困 難である.また活性低下虫体は、螢光が微弱となるか ら、その存在を確認するためには、同一視野の普通光源 への切換による再鏡検が必要である.これらのために は、虫体を同一個所に固定しなければならぬ.(ii) 虫数 算定にあたつては、本法下では暗視野となるため、その 割線が認められず、通常の血球計算盤は使用不能であ る.などの技術上改良を要する点がいくつかある.そこ で案出されたのが、以下に述べる灯芯法である.

用いた虫体は,RH 株感染後3日目のマウス腹水内栄 養型である.また本法においては,専ら灯芯(イ, Juncus effusus var. decipiens の髄)を用いたが,ほ かに,ニワトコ,ヤマブキ,キクイモ,ヒメムカシヨモ ギ,タケニグサなどの髄も試みた.まず,髄の軟化処理 として,5%苛性カリ水溶液1日間,弗化水素酸1週 間~10日間,90%エタノールに飽和した苛性ソーダ液6 日間のいずれかで処理後、必要に応じて5%醋酸に10分 間浸漬し,水洗約1時間,その後エタノールにて脱水, クロロフォルムーパラフィン法にて封埋した(熊沢, 1956). 横断切片の厚さは,ユング式ミクロトームで 200 μ 前後とした.切片をスライドグラスに貼付後,型 通りに脱パラし,乾燥保存する.観察にあたつては,ま ず上記貼付切片上に1万倍 AO 生理食塩水を滴下,切 片を染色し,余滴除去後,AO 染色虫体浮游液を同上切 片上に滴下,カバーグラスでおおい,パラフイン・ワゼ リン混合物にてその周縁を封じて観察する.つまり横断 切片上に現われた灯芯細胞間隙に,虫体を封入して観察 する方法である.

2) AO 顆粒の観察と虫体感染試験

被検虫体は,RH 株感染後3日目のマウス腹水内栄養 型であり、遠沈管内に保存して虫体感染能と AO 顆粒 の関係を追究した.この場合には、遊離虫体を集める意 味で,採取腹水を低速遠沈(500 rpm, 2分) にて宿主 側の細胞成分をできるだけ除去し, 次にその上清を A, B, C 部に3分し、A部は虫数算定ならびに pH 測定用 とし、B部は抗生物質添加後、少量ずつ遠沈管内に分注 し、無菌的に室温下で保存、C部は、遠沈(3,000 rpm, 10分)後、上清を生理食塩水と置換し、B部同様抗生物 質添加後,分注保存した.抗生物質は,新井ら (1958), Cook (1958) などにもとずき、 ペニシリン100単位/ml、 ストマイ100 μg/ml 添加した. ΒおよびC部は, 経時的 にその一部をマウス腹腔に注入して感染能を調べ、他部 を螢光鏡検および pH 測定に用いた. マウス1匹あた りの接種量は,保存液0.2 ml に抗生物質含有液0.1 ml (抗生物質含有の 生理食塩液で、 抗生物質量については 前出)を加えた計0.3 ml で, それぞれマウス3匹に接 種した. 接種虫数は, マウス1匹 あ たり 900万で あつ た. 螢光鏡検は, 主に虫体の形態および AO 顆粒の存 否に重点を置き、前述の灯芯法を用いて観察および個数 算定をおこなつた. AO 顆粒を示す虫体がす くなくな り,検出しにくくなつた時は, 遠沈集虫 (3,000 rpm, 5~10分)後、螢光鏡検した. B部を用いての検討をさ らにもう一回追加したが、この際のマウス1匹あたりの 接種虫数は610万で,他の条件は全く上記同様であつ た. 生残マウスについては、すべて色素試験をおこなつ て感染の有無を調べた.

 AO 顆粒の生物学的ならびに細胞化学的観察方法 虫体は、すべて感染3日目のマウス腹水中よりえた栄 養型で、専ら遊離虫体を用いた。

1) 普通鏡検と位相差鏡検による AO 顆粒の確認

普通鏡検法は全く通常のものであり、位相差鏡検は、 Union UM 型万能顕微鏡(ユニオン光学)を用い、位 相差レンズとしては、BM が好適であつた.

2) AO 顆粒の固定の検討

AO 顆粒が元来固定保存の可能な構造か否かの検討を おこなう目的で,固定液としては、メタノール,80%エ タノール,80%イソプロパノール,Carnoy 液,Bodian 液,Baker 液,Serra 液,Schaudinn液,Rossman 液,アセトン,10%緩衝ホルマリン,2%グルタルアル デヒド,オスミック酸蒸気などを使用し,固定前後にお ける同一顆粒の追究にはPalade 液 (Palade, 1952)を 用いた.

3) AO 顆粒の細胞化学的検討

虫体含有腹水をスライドグラス上に塗抹し,室温下で オスミック酸蒸気により3分間固定し,水洗後各種の方 法で染色した.細胞化学的研究のための固定液としてオ スミック酸蒸気が適当かどうかをみるために,通常,細 胞化学的研究に用いられる固定液での検討も合わせおこ なつて,前者での結果と比較した (Table 11).フォス ファターゼ検出の場合にはオスミック酸蒸気,イソプロ パノール,アセトンなどのいずれでも酵素活性が著しく 低下するので,専ら,生理食塩水で稀釈した2%グルタ ルアルデヒドを,4°C,30分間作用させた.上記のほか に,一般構造をみるために,オスミック酸蒸気固定後, Giemsa 染色と Heidenhain 鉄へマトキシリン染色も 試みた.この時, McIlvain 緩衝液で,pH を Giemsa 染 色で5.0 に, Heidenhain 鉄へマトキシリン染色で7.8 に補正した(Koyama & Ilardi, 1968).

対照実験として RNA 消去のための RNase 作用試 験 (Pearse, 1961), グリコーゲンの唾液消化試験 (Lillie, 1965), ピリジンによる 脂質抽出試験 (Pearse, 1961), 硝酸によるニンヒドリンーSchiff 反応阻害試験 (Pearse, 1961), 弗化ソーダによる酸性フォスファター ゼ阻害試験 (Lillie, 1965) などをおこなつた.また, 各試験において,基質除去群を必ず対照群として併置し た. RNase は, Worthington Bioch. Corp. 製のもの を 1 mg/ml の濃度で,蒸溜水または McIlvaine 緩衝 液 (pH 7.4) に溶解し, 37°C で 1 時間作用させた.ピ リジンは室温で5分間作用させた.また各反応は,あら かじめ AO で染色したものと無染色のものの両者につ いておこなつた.

細胞化学的テクニックによる重複染色においては、 Gomori 法 (Gomori, 1950, 1952) による酸性フォス ファターゼ陽性顆粒の確認を中心として、同一顆粒につ いての他染色法による重複染色を おこ なつた. すなわ ち、(i) 虫体塗抹→2%グルタルアルデヒド固定→水洗 →Laybourn 液によるメタクロマジー反応 (Laybourn, 1924) →グリセリン封入→鏡検(メタクロマジー顆粒の 確認)→水洗→Gomori 法→鏡検(酸性フォスファター ゼ陽性顆粒の確認). Laybourn 液によるメタクロマジ ー反応においては,酸性フォスファターゼ活性の低下を 極力防止する目的で、加熱処理はおこなわず、グルタル アルデヒド固定後直ちに、1液で3分間、2液で1分間 の短時間処理をおこない、一旦鏡検の後、直ちに Gomori 法を適用した. なお, 前述の如く, Gomori 法に は、弗化ソーダによる酵素阻害群、基質除去群などの対 照群を置いた.また,操作途上での酵素活性の低下が心 配されるので、通常、酸性フォスファターゼの分布状態 の良く知られている正常マウス肝組織を対照にえらび、 その塗抹標本による同一処理群をも併置して、虫体の場 合と比較検討した.(ii) 虫体塗抹→2%グルタルアルデ ヒド固定→Laybourn 液によるメタクロマジー反応→(i) 同様に 鏡検 (メタクロマジー 顆粒の 確認) →同染色 の 脱色を目的としてアセトンで洗う→水洗→Giemsa 染色 (McIlvaine 緩衝液で pH 7.0に補正) →水洗→ブタノー ル→キシロール→バルサム封入→鏡検(メタクロマジー 顆粒の確認).(iii)虫体塗抹→2%グルタルアルデヒド 固定→Gomori 法→鏡検(酸性フォスファターゼ陽性顆 粒の確認)→オイルレッドOによる脂質染色(Pearse, 1961)→鏡検(脂質陽性顆粒の確認)

4) AO 顆粒の肥大現象の観察

この現象を観察するための培地は、5) AO 顆粒に対 するリボヌクレアーゼ処理の影響の項で述べるものと同 じものである. 観察方法は、Robbins & Marcus (1963) に従った. また、肥大前後の虫体の Gomori 法による 酸性フォスファターゼ検出も試みた.

5) AO 顆粒に対するリボヌクレアーゼ処理の影響

本処理においては、RNase を 5.0, 1.0, 0.5 mg/ml の濃度に含む 3 種の培地 それ ぞれ 2 ml に、 生虫体約 9,000万ずつを 浮遊、 37°C に温浴して、 生虫体に 対す る RNase の影響を螢光鏡検によつて調べた (Brachet, 1956; Fotakis & Stammler, 1963). 実際には、Robbins & Marcus (1963) や Fotakis & Stammler (1963) などの方法を参考にして、まず培地として、 Hanks 液 と人血清を容量比9:1に混じたものに、人アルブミン (Nut. Bioch. Co.) 0.5%添加したものを用い、人血清 はトキソプラズマ抗体の無いものをえらび, 培地の pH は7.2~7.4とした. 対照群としては,(i) RNase を含 まない培地,(ii) RNase 添加培地に RNase の阻害剤 であるへパリンを5 mg (500単位)/ml 加えたものなど を置いた. 螢光鏡検は, 虫体浸漬後1,3,6,24,53 の各時間毎におこない, 同時にピロニン-メチルグリー ン染色によつて RNA の推移も観察した.

成 績

1. AO 顆粒の基礎的観察とその発色条件

1) AO 顆粒の基礎的観察

AO 生体染色-螢光顕微鏡法 で, 虫体内構造, 特に AO 顆粒の観察および虫体と宿主細胞との分別(differentiation) に対して、従来好適と考えられている発色条 件下(AO 濃度1~2万倍, pH 7.0~7.5, 室温)で は、栄養型虫体およびシスト壁を機械的にこわしてとり だした シスト型虫体ともに、 細胞質は 鮮紅色に、 核は 黄緑色に発色して、虫体全体が最も鮮明にみえた、細胞 質の赤色螢光はおもにその中にほぼ一様に分布する多数 の(およそ10数個の),大きさ100~500 mµの,球形赤 色の顆粒にもとずくものであることを認め(小山ら, 1962) (Fig. 1), かつこの際の 染色時間は 1~2分で 十分であることがわかつた.この顆粒構造は、核を除い た細胞質内に広く分布しており、また、この構造以外の 細胞質部分にも、通常多少の赤色螢光を認める.また、 宿主細胞は、上記の AO 処理条件下では、一部の遊走 細胞を除いて、すべて黄緑色に発色するため、虫体をそ れらと見分けることは容易である. 宿主側の白血球の如 き遊走細胞では、その細胞質内に Toxoplasma 同様に 赤色顆粒が認められるが, Toxoplasma が特異な三日月 型をとることと,小型であることとでこれまた容易に区 別できる((Fig. 2).シスト型虫体の細胞質内に存在す る AO 顆粒は、栄養型虫体のそれに比して個数多く、 全体として、その赤色螢光の程度は栄養型虫体のそれよ り大であつた.ただし、シストを破壊せずにシスト全体 を染めた場合は、染まりがたく、染色時間を5~30分に 延長すると比較的良く染まつてはくるが、なお橙色程度 の場合が多い. 普通シストのみられる脳組織では、宿主 細胞がほとんどすべて黄緑色に発色するので、橙色球体 としてシストの存在は極めて容易に認められる. 上記の AO 濃度をたかめると、シストは赤色となるが、宿主細 胞も同様に赤色化の傾向を示すので、たがいに分別しが たくなる.また,通常,腹水中の栄養型虫体では,pH を特別に考慮せず,腹水と AO 生理食塩水溶液との混

合により,十分な赤色発色を認める(AO 濃度1~2万 倍)が,肝,脾,脳など諸臓器内栄養型虫体は,それら の磨砕液中に含まれる虫数および宿主細胞数が増大する とともに,必ずしも,良好な発色を示さなくなる.これ は,腹水を遠沈して集虫液を作つて観察した場合でも同 様で,後述の発色条件の検討の項でも触れるが,含まれ る細胞数の増大とともに,細胞1個あたりにとり込まれ る AO の濃度低下に基因すると思われる.この場合に は,AO液を多量に用いることによつて発色を正常化す ることが可能である.最後に,虫体の顆粒構造を観察 する場合には,封入試料をできるだけ少量にして標本. をつくること,つまり,カバーグラスで虫体あるいは シストをやや圧平ぎみにして鏡検するとよく観察でき る.

2) AO 顆粒の発色条件の検討

a) 至適 AO 濃度

まず,色素量と虫数の関係を調べた結果は、虫数 $16\times$ 10³/ml ではほとんどすべての虫体は緑色で,AO 顆粒: はほとんど認められない. 32×10^7 /ml で は、細胞質赤 色で,AO 顆粒も良く認められるが、更に虫数を減じて 16×10^7 /ml とすると、細胞質の赤色 はさらに 強くな り、AO 顆粒はかえつて認めにくくなる.従つて以後の 研究においては、終始虫数と色素量の関係を考慮して実 験を進めた.

さて, 至適 AO 濃度については, Table 1 & 2の如: く, 栄養型虫体, シスト, シストより遊離せしめた虫体 の3者いずれも, AO 濃度1~2万倍で分別が良く, AO 顆粒も認め易かつた.

b) 至適 pH

Table 3 & 4に示すように、栄養型虫体、シスト、シス トより遊離せしめた虫体の3者を通じて、pH 7.0~7.5. で分別の良いこと、かつまた AO 顆粒の存在も最も認 め易いことがわかる.また、虫体やシストを含む浮遊液 に、緩衝液や AO を加えた混合後の pH は、初めに加 えた緩衝液の pH と大差はなかつた.

c) 染色時間と感染能の関係

染色後1分で,すでに好適な発色をみせるが,時間の 経過に伴ない,赤色螢光は次第に強まり,核や AO 顆 粒の分別は逆に悪くなる.これと同時に,感染能も急激 な衰退を示し,Table 5 にみるように,対照との間に大 差のあることが認められた.すなわち,対照群では,実 験開始後2日でなお感染力を保持しているのに反して, AO 染色群では,染色後3時間ですでに生残マウスが現

Concentra AC	ation of)*	Nucleus	Cytoplasm	AO granules	Differentiation between nucleus and cytoplasm
1 :	500	Obscure	Red	Obscure	Poor
1 :	2,000	Obscure	Red	Obscure	Poor
1 :	5,000	Pale yellowish green	Red	Clear	Fairly good
1 :	10,000	Yellowish green	Red	Clear	Good
1 :	20,000	Yellowish green	Red	Clear	Good
1 :	50,000	Yellowish green	Pink	Obscure	Fairly good
		* Acridine orange. T	emperature :	24-26C; pH: 7.	.5.

Table 1 Fluorescence of RH trophozoites stained with acridine orange in various concentrations

Table 2 Fluorescence of Beverley cysts stained with acridine orange in various concentrations

			Organisms lil	perated from	cyst	Differentiation	
Concentration of AO*	Whole cysts	Nucleus	Cytoplasm	AO granules	Differentiation between nucleus and cytoplasm	between cysts and host cells	
1: 500	Red	Obscure	Red	Obscure	Poor	Poor	
1: 2,000	Reddish orange	Yellowish green	Red	Obscure	Good	Poor	
1: 5,000	Orange	Yellowish green	Red	Obscure	Good	Fairly good	
1: 10,000	Orange	Yellowish green	Red	Clear	Good	Good	
1: 20,000	Orange	Yellowish green	Pink	Clear	Good	Good	
1: 50,000	Yellow	Obscure	Yellow	Obscure	Poor	Poor	

* Acridine orange. Temperature : 24-26 C; pH : 7.5.

Table 3 Effect of pH on fluorescence of RH trophozoites

Buffered solution	pН	Nucleus	Cytoplasm	AO* granules	Differentiation between nucleus and cytoplasm
	3.15	Pale yellowish green	Yellowish green	Obscure	Poor
	4.09	Yellowish green	Yellowish orange	Obscure	Fairly good
	5.08	Yellowish green	Yellowish orange	Obscure	Fairly good
McIlvaine	6.04	Yellowish green	Orange	Clear	Fairly good
	6.97	Yellowish green	Pink	Clear	Good
	7.50	Yellowish green	Red	Clear	Good
	7.95	Yellowish green	Red	Clear	Good
Clark	7.97	Yellowish green	Red	Clear	Good
and	8.95	Yellowish green	Red	Clear	Good
Lubs	10.00	Yellowish green	Red	Clear	Good
Ascites (Control)	7.70	Yellowish green	Red	Clear	Good

Temperature: 24-26 C; Concentration of acridine orange: 1:10,000. * Acridine orange.

		-	Mec	hanically exc	ysted paras	sites	- Differentiation	
Buffered solution	pН	Whole cysts	Nucleus	Cytoplasm	AO* granules	Differentiation between nucleus and cytoplasm	between cysts and host cells	
	3.15	**	_		_	_	Poor	
	4.15	_		—	-	—	Poor	
	5.15	_	_	—			Poor	
McIlvaine	6.10	Yellow	Yellowish green	Yellow	Obscure	Poor	Poor	
	7.10	Orange	Yellowish green	Pink	Obscure	Good	Good	
	7.50	Orange	Yellowish green	Red	Clear	Good	Good	
	7.96	Red	Obscure	Red	Clear	Fairly good	Poor	
Clark	7.91	Red	Obscure	Red	Clear	Fairly good	Poor	
and	9.01	Red	Obscure	Red	Clear	Poor	Poor	
Lubs	9.99	Red	Obscure	Red	Clear	Poor	Poor	
Homogenate of infected mouse brain (Control)	6.64	Pale pink	Yellowish green	Pink	Obscure	Fairly good	Poor	

Table 4 The effect of pH on fluorescence of Beverley cysts

* Acridine orange; ** Not fluorescent; Temperature: 24-26 C; Concentration of acridine orange: 1:10,000.

Table 5 The infectivity of RH trophozoites in the infected mouse ascites after various periods of storage in acridine orange-saline solution at room temperature

Suspending fluid	Storage period (hr.)	No. of mice dead /No. of mice / inoculated*	Surv	vival day	5
	0	3/3	4.5	5.0	5.0 (4.8)***
	1	3/3	6.0	6.0	7.0 (6.3)
	2	3/3	9.0	10.0	13.0(10.7)
	3	2/3	10.0	10.0	
	6	0/3			
Acridine orange- saline**	12	0/3			
	24	0/3			
	36	0/3			
	48	0/3			
	72	0/3			
	96	0/3			
	0	3/3	5.0	5.0	5.0 (5.0)
	1	3/3	4.0	5.0	6.0 (5.0)
	2	3/3	6.0	5.0	4.0 (5.0)
	3	3/3	4.5	5.0	5.0 (4.8)
	6	3/3	4.5	5.0	6.5 (5.3)
Saline (Control)	12	3/3	4.5	4.5	5.5 (4.8)
	24	3/3	5.0	5.0	5.0 (5.0)
	36	3/3	5.5	5.5	6.5 (5.8)
	48	3/3	7.0	7.0	7.0 (7.0)
	72	0/3			
	96	0/3			

* The number of toxoplasmas inoculated is about 650,000 per mouse.

** Concentration of acridine orange is 1:20,000.

*** Average days of survival.

	Storage period	Fl	uorescence	of troph	ozoites		
tested	in distilled water (min.)	Nucleus	Cytoplasr	n Ac	ridine or granule	ange s	dead / inoculated*
Ascites from infected mouse	5	Yellowish green	Yellowish green	l	Obscure		0/3
Whole liver from infected mouse	15	Yellowish green	Red		Clear		3/3
Cysts (Beverley	strain)						
	Storage period		Fluorescen	ce of cy	sts		
Materials	in distilled	Whole	Р	arasites	in cysts	I	No. of mice No. of mice infected
listed	water (min.)	cysts	Nucle	eus	Cytopla	asm	
3371 1 1	15	Orange	Yellowish	green	Reddish	orange	3/3
whole brain from	30	Orange	Yellowish	green	Orange		3/3
miletted mouse	60	Orange	Yellowish	green	Orange		3/3
	. 15	Pale orang	e	Slightly	clear		0/3
from infected more	rain 30	Pale orang	e	Obscure			0/3
from milected mot	60	Pale orang	e	Obscure			0/3

Table 6 The effect of distilled water on fluorescence of *Toxoplasma* parasites Trophozoites (RH strain)

* Three mice were each inoculated with ascites or tissue homogenate after the material was kept in distilled water for designated period of time. Temperature: 24-26 C.

われ、6時間ではほとんど感染力を消失している.

- 2. 感染臓器内虫体の検出
- 1) 感染マウスの腹水および臓器の蒸溜水処理

Table 6 にみる如く,腹水中の虫体は,蒸溜水内5分間 浸漬ですでに虫体の AO 顆粒は認めにくくなり、マウ スへの感染性も消失している.しかし,肝臓のような臓器 の内部虫体は、臓器の15分間程度の蒸溜水浸漬では影響 をうけず,その中の虫体は,AO 顆粒もマウスへの感染 性も保有していた. なお, 無処置虫体は, 腹水内および 肝内虫体ともに赤色螢光を発し、それらを接種した対照 群のマウスは、すべて感染斃死した. また、 Beverley 株感染マウスの脳をそのまま蒸溜水に浸漬した場合で も、 肝臓の場合と同様に、 浸漬時間15~60分の範囲で は、シスト全体の螢光色調は橙色、シスト内虫体は橙赤 色で変化なく, マウスへの感染能も確実に認められた (Fig. 3 & 4). しかし, 脳磨砕液の場合には, 上述の 時間内にシスト全体の螢光色調は淡橙から黄色となり、 内部虫体の輪郭は不明瞭となった (Fig. 5 & 6). かよ うなシストをマウスに接種した場合には、接種マウスの 脳内にシストを認めることなく、また、色素試験の結果 も16倍陰性であつたので、接種時に、これらのシスト は、感染能を失つていたものと考えられる. なお、無処 置対照群では,虫体の橙赤螢光を認めるとともに,マウ スへの感染性も保持していた.

2) 消化法併用による虫体検出試験

消化液処理によつてシストは崩解し、シスト内虫体は 遊離する. Table 7 を通覧して、栄養型虫体をペプシン 処理した場合、処理時間30分 で赤色螢光は 現われがた くなり、従つて顆粒の存在も明らかでなくなる. また, すでに接種マウスの感染不成立がみられ、トリプシンの 場合よりも虫体に対する害作用が強いように思われる. トリプシンの場合には、栄養型虫体、シスト型虫体両者 ともに、消化60分までは確実にマウスへの感染能を保持 しているばかりでなく、細胞質の赤色螢光も残存してい ることがわかる (Fig. 7 & 8). また宿主側の細胞成分 もかなりよく消化するので、多量の材料を一度に処理で きることとなり、遠沈集虫法と併用すれば、相当な検出 率の向上が期待できる.消化液処理時の損傷には、ほか に、処理後の染色による虫体の形態変化がある. これ は、シスト型虫体より栄養型虫体 でより明瞭に認めら れ,正常な三日月型から楕円型に変形する. さらに進む と、染色前から不定形となりマウスへの感染能を消失し た虫体が出現する.こうした事実から消化後の虫体は活 性が低下していて、外要因の影響を受けやすいように思

418

,		Time of	Struc par	tture of asites		Fluorescen	ce of para	ites	No. of mice infected /
tromogenate of tissue tested	fluids	digestion (min.)	Before staining	After staining	Nucleus	Cytoplasm	Acridine orange granules	Differentiation between nucleus and cytoplasm	No. of mice inocu- lated*
Liver from mouse	-	30	Irregular	Irregular	Yellowish green	Yellowish green	Obscure	Poor	0/3
infected with RH strain	Pepsin-HCI	09	Irregular	Irregular	Yellowish green	Yellowish green	Obscure	Poor	0/3
Brain from mouse		30	Crescent	Crescent	Yellowish green	Pink	Obscure	Fairly good	3/3
infected with Beverley strain	Pepsin-HCI	60	Crescent	Crescent	Yellowish green	Pink	Obscure	Fairly good	3/3
Liver from mouse		30	Crescent	Crescent or ellipsoidal	Yellowish green	Red	Slightly clear	Good	3/3
infected with RH strain	l rypsın	09	Crescent	Crescent or ellipsoidal	Yellowish green	Red	Slightly clear	Good	3/3
Brain from mouse		30	Crescent	Crescent	Yellowish green	Red	Clear	Good	3/3
infected with Beverley strain	Trypsin	60	Crescent	Crescent	Yellowish green	Red	Clear	Good	3/3
* Three mice	were each inocu	ulated with t	the tissue hor	nogenate after	the materia	l was kept in	n digestive	fluid for designate	d period

Table 7 The effect of digestive fluids on fluorescence of Toxoplasma parasites

われた. 例えば, 螢光法に使用される紫外 線によつて, 褪色が一層甚だしくなるのも その一つと思われる. ただしこうした傾向 は, シスト型虫体よ り 栄養型虫体で著し い. 要するに, シスト型虫体は栄養型虫体 に比して, すべての外的条件に対して抵抗 性がより強いように思われるのである. 3. AO 顆粒と虫体感染能との関係

灯芯法

この方法によると、Fig. 9 & 10 にみる ように、灯芯の横断切片上に現われる細胞 膜由来の隔壁が, 橙色の 螢光を発 するた め、細胞間隙が明瞭な一区画として認めら れる.従つて,この間隙内への虫体の封入 により、虫体を固定し、細胞内の観察と虫 数算定が可能になる. つまり, 虫体の静止 によて、細胞質内の AO 顆粒の存否の 確認, 形態観察のほか, Fig. 10 にみるよ うに, 螢光色調微弱で, 発見しにくい活性 低下 虫体も, 普通光源への 切換 えによつ て容易にその存否を確認できる. また虫数 算定にあたつては、これらの区画が、血球 算定盤のそれと同じ役割を果すことにな る. なおイ以外の植物の髄では, 内部構造 の上から上記の目的を達することができ ず,以後の実験には使用しなかつた.

2) AO 顆粒の観察と虫体感染試験

腹水内に保存した虫体(B部)のうち, AO 顆粒保持虫体の個数は、Table 8 でみ るように、保存時間の経過とともに減少し た.また保存とともに赤色色調は現われに くくなり、AO 顆粒そのものの輪郭も不明 瞭となる.そして、遂には、細胞質の螢光 は淡黄色から無色と変わり、外部形態も初 めの三日月型から楕円形ないし球形に変化 し,大型の赤色胞状構造部保持虫体も出現 するようになる. このような虫体では、い ずれも AO 顆粒を認めにくい. 虫体保存 日数が長くなると、発色虫体が少くなるの で,遠沈集虫法によつて AO 顆粒保持虫 体の発見に努めた (Fig. 11 & 12). また 同時におこなつた保存虫体の接種によるマ ウス生存日数は,保存期間が長くなるとと

time.

of

Storage period (days)	% of parasites with AO* granules in all parasites in ascites	No. of parasites with AO granules injected into mice	No. of mice / No. dead / inc	o. of mice oculated**	Survival days
0	90-100	$8.1 - 9.0 \times 10^{6}$	3/3	4.5 4.5	5.5 (4.8)***
0.5	90-100	$8.1 - 9.0 \times 10^{6}$	3/3	3.5 4.5	4.5 (4.2)
1.0	80-90	$7.2 - 8.1 \times 10^{6}$	3/3	4.5 5.5	5.5(5.2)
1.5	80-90	$7.2 - 8.1 \times 10^{6}$	3/3	4.5 4.5	5.0 (4.7)
2.0	80-90	$7.2 - 8.1 \times 10^{6}$	3/3	4.5 4.5	5.5 (4.8)
2.5	50-60	$4.5 - 5.4 \times 10^{6}$	3/3	5.0 5.0	5.5 (5.2)
3.0	10- 30	$0.9 - 2.7 \times 10^{6}$	3/3	5.5 6.5	6.5 (6.2)
3.5	10- 30	$0.9 - 2.7 \times 10^{6}$	3/3	4.5 5.5	5.5 (5.2)
4.0	1- 5	$0.09 - 0.45 \times 10^{6}$	3/3	6.5 6.5	6.5 (6.5)
5.0	0.3 -0.5	$0.03 - 0.045 \times 10^{6}$	3/3	6.5 7.5	7.5 (7.2)
6.0	0.01-0.02	900-1,800	3/3	8.0 8.0	8.0 (8.0)
7.0	0.001	113	3/3	9.5 9.5	11.0(10.0)
8.0	0.0003	23-30	1/3	9.5	

Table 8 Effects of storage of the infected mouse ascites on the fluorescence and infectivity of RH trophozoites (1)

* Acridine orange.

Temperature: 24-26 C.

** About 9.0×10⁶ parasites were inoculated into each mouse after storage of ascites for designated period of days.

*** Average days of survival.

Table 9 Effects of storage of the infected mouse ascites on the fluorescence and infectivity of RH trophozoites (2)

Storage period (days)	% of parasites with AO* granules in all parasites in ascites	No. of parasites with AO granules injected into mice	No. of mice /No [•] of mice dead inoculated	5	Survival days
0	90-100	$5.5 - 6.1 \times 10^{6}$	3/3 4	.0 4.0	4.5 (4.2)***
1.0	. 90-100	$5.5 - 6.1 \times 10^{6}$	3/3 4	.5 4.5	4.5 (4.5)
2.0	40-60	$2.4 - 3.7 \times 10^{6}$	3/3 4	.5 4.5	5.0 (4.7)
3.0	5-10	$0.3 - 0.6 \times 10^{6}$	3/3 5	.5 6.0	7.0 (6.2)
4.0	1-2	$0.06 - 0.12 \times 10^{6}$	3/3 8	.0 8.0	8.0 (8.0)
5.0	0.02	1,200	3/3 9	.5 10.5	10.5(10.2)
6.0	0.005	300	3/3 10	.5 11.5	11.5(11.2)
7.0	0****	0	0/3		
8.0	0	0	0/3		
9.0	0	0	0/3		
10.0	0	0	0/3		

* Acridine orange.

Temperature: 24-26 C.

** About 6.1×10⁶ parasites were inoculated into each mouse after storage of ascites for desingnated period of days.

*** Average days of survival.

**** About 400,000 parasites were observed.

もに、延長の傾向、すなわち感染能の低下傾向をとり、 8日目には、AO 顆粒保持虫体は被検虫体30~40万個の うちわずか1個となり、接種マウス3匹中2匹は生残す るようになつた.この実験でのマウス1匹あたりの接種 虫数は900万であるが、各保存日における AO 顆粒保 持虫体の出現率から計算すると、実際にマウス1匹あた りに接種された AO 顆粒保持虫体の実数は Table 8 に 示したようになる.この表は,AO 顆粒保持虫体出現率の 低下傾向とマウスへの感染能の衰退傾向とが,ほぼ平行 関係にあることを示している.この試験中の室温は22.5 ~24.0°C,試験開始時の虫体保存液は pH 7.9, 終了時 のそれは, pH 8.5であつた.上記試験の結果,さらに

Storage period (days)	% of parasites with AO* granules in all parasites in saline	No. of parasites with AO granules injected into mice	No. of mice /No. of mic dead / inoculated*	e *	Su	irvival days		
0	90-100	$8.1 - 9.0 \times 10^{6}$	3/3	3.0	4.5	5.5	(4.3)***	
0.5	90-100	$8.1 - 9.0 \times 10^{6}$	3/3	4.5	4.5	5.5	(4.8)	
1.0	90-100	$8.1 - 9.0 \times 10^{6}$	3/3	5.5	5.5	5.5	(5.5)	
1.5	70-80	$6.3 - 7.2 \times 10^{6}$	3/3	5.0	5.5	5.5	(5.3)	
2.0	60-70	$5.4 - 6.3 \times 10^{6}$	3/3	5.5	7.5	7.5	(6.8)	
2.5	40-50	$3.6 - 4.5 \times 10^{6}$	3/3	5.5	5.5	6.5	(5.8)	
3.0	1–5	$0.09 - 0.45 \times 10^{6}$	3/3	7.5	7.5	7.5	(7.5)	
3.5	1–5	$0.09 - 0.45 \times 10^{6}$	3/3	7.5	7.5	7.5	(7.5)	
4.0	0.05-0.1	4,500-9,000	3/3	8.5	8.5	10.0	(9.0)	
5.0	0****	0	0/3					
6.0	0	0	0/3					
7.0	0	0	0/3					

Table 10 Effects of storage of RH trophozoites in saline on the fluorescence and infectivity of the parasites

* Acridine orange.

Temperature : 24–26 C.

** About 9.0×10⁶ parasites were inoculated into each mouse after storage of RH trophozoites in saline for designated period of days.

*** Average days of survival.

**** About 400,000 parasites were observed.

虫体保存8日以後の追加検討が必要と思われたので、く り返し実験をおこなつた.

その結果は、Table 9 のごとく、虫体保存後6日に は、AO 顆粒保持虫体は、虫体2万個中に1個発見でき る程度で、接種マウスは3匹すべて感染死している.7 日およびそれ以降では、虫体40万個程度調べても AO 顆粒保持虫体を見出せず、接種マウス3匹はすべて生残 するというように、今回も、前回同様に AO 顆粒保持 虫体の出現率の推移とマウスへの虫体感染能のそれとが 明らかに平行関係にあることを認めた.この試験中の室 温は、24.5~27.0°C、および保存液の pH 変動は8.3~ 8.7であつた.

腹水の遠沈上清部を生理食塩水に置換保存した群(C 部)での試験は,B部による第1回目の試験と同時に実施した.この時の保存液のpH 変動は7.4~7.8であつた.Table 10でみるように、この場合には腹水内保存の場合よりかなり早く,保存5日目から AO 顆粒保持虫体は認めなくなり,同時に接種マウスはすべて生残している.したがつて,AO 顆粒保持虫体の色調の衰退およびマウスへの虫体感染能の低下の様子は,腹水保存群にくらべるとやや急ではあるが,やはり平行関係が認められる.最後に,全試験を通じて,生残マウスの色素試験をおこなつたが、すべて陰性であつた.

4. AO 顆粒の本態

1) 普通鏡検と位相差鏡検による AO 顆粒の確認

普通鏡検下で AO 染色をおこない,同一生虫体での 染色前後 に お け る細胞質内顆粒の染まりを検討した結 果,生虫体に認められる細胞質顆粒が AO で染色され るらしく、AO そのものの色調である淡橙色になること を確認した(Fig. 13 & 14). また終始同一虫体を追究 することにより螢光鏡検によつて認めた赤色顆粒は、そ のまま淡橙色の同一顆粒構造として普通鏡検でも認めら れた (Fig. 15 & 16). そして螢光鏡検で赤色螢光の強 いところほど, 普通鏡検では AO 本来の色調である橙色 が濃く,その部分の AO 染着度の強いことを示した. 色 素は細胞質内全体にもとり込まれるが、色調ははるかに 淡く、単位体積あたりの摂取色素量は、顆粒構造の場合 にくらべて格段にすくないものと考えられる. また AO 染色の有無にかかわらず,位相差鏡検によつて認めた顆 粒は,そのまま普通鏡検でも認めることができ(Fig. 17 & 18), 普通鏡検で認めず, 位相差鏡検ではじめて認め るような特別な顆粒構造は存在しなかつた.

AO 顆粒の固定の検討

一般に、固定後では、固定液そのものの個有螢光が加 わることと、虫体の収縮のために AO 顆粒を認めにく くなる.また、あらかじめ AO 染色後固定の場合でも、 固定操作で脱色するから、やはり AO 顆粒は認めにく い.虫体の収縮変形はほとんどの固定液で認められる が、グルタルアルデヒドとオスミック酸蒸気において は、比較的に収縮が少く、普通および位相差鏡検で虫体

Substances tested	Fixatives	Methods or reactions
Nucleic acids	Buffered formalin or osmic acid vapour	Pyronin-methyl green method(Kurnick, 1955)
Carbohydrates	Carnoy, Bouin, 80% ethanol or osmic acid vapour	PAS reaction(Lillie, 1965)or Alcian Blue 8GS method(Lillie, 1965 after Steedman, 1950)
Lipids	Buffered formalin or osmic acid vapour	Oil Red O method or Sudan Black B Method
Proteins	100% ethanol or osmic acid vapour	Ninhydrin-Schiff method (Yasuma & Ichikawa, 1953)
Volutin	Unfixed or osmic acid vapour	Laybourn's method(Laybourn, 1924), Wachstein's method(Wachstein & Pisano, 1950)or Neisser's method(Takeya et al., 1959)
Acid phosphatase	Unfixed, acetone, 2% glutaraldehyde or osmic acid vapour	Lead method(Gomori, 1950, 1952)
Alkaline phosphatase	Unfixed, 70% isopropanol, 2% glutaraldehyde or osmic acid vapour	Calcium phosphate method(Lillie, 1965)

Table 11 Fixatives and cytochemical methods for various organic substances

Table 12 Cytochemical reactions on the granular structure in the cytoplasm of RH trophozoites

Substances tested	Staining reagents or reactions used	Characteristics of granular structure				
		Cytochemical reaction	Colour	Number	$_{(\mu)}^{\rm Size}$	Remarks
	Giemsa		Red*	About 10	0.1-0.5	Throughout the cytoplasm
Carbohydrates	PAS reaction	+	Pink	Several or less	0.05-0.5	In the periphery of organisms Digestible with saliva
Lipids	Oil Red O Sudan Black B	+++++	Red Black	Several Several	$0.1 - 0.5 \\ 0.1 - 0.5$	Extractable with pyridine
Volutin	Laybourn's reagen Wachstein's reagen Neisser's reagent	$\begin{array}{ccc} t & + \\ ht & + \\ + \end{array}$	Red* rown-black* Red*	About 10 About 10 About 10	$\substack{0.1-0.5\\0.1-0.5\\0.1-0.5}$	Throughout the cytoplasm
Acid phosphatase	Gomori's reagent	+ B	rown-black	About 10	0.1-0.5	Throughout the cytoplasm

* Metachromatically stained.

内部の顆粒構造が認められる.そして,この結果は,あ らかじめ AO で染色しておいてもおかなくても同じで ある.次に,AO 顆粒保持生虫体の顕微鏡標本を作製し, スライドグラスとカバーグラスの隙間より Palade 液を 注入して,普通鏡検下で,固定前後における同一 AO 顆粒を追跡した結果,この顆粒構造の固定保存されるこ とを知つた (Fig. 19 & 20).また普通鏡検の範囲で は,固定によつて新たな顆粒構造の出現する形跡は認め なかつた.

3) AO 顆粒の細胞化学的検討

前述のごとく,固定液のなかでは,オスミック酸とグ ルタルアルデヒドの両者が比較的よく顆粒構造を保存す ることがわかつたので,次に,これらの固定剤を用いて 固定し,虫体の細胞化学的検討をおこなつた結果,次のよ うな成績がえられた.すなわち,通常の細胞化学用固定 剤使用の場合と,オスミック酸蒸気使用の場合とで比較 したところ,細胞内諸物質の存否,分布などにつきほぼ 一致した成績がえられた.したがつて,オスミック酸蒸

気固定は、細胞化学的研究の場合にも十分使用可能と思 われる. ただし、フォスファターゼの検出では、酵素活 性の極度の低下をもたらすので成績はよくなく,従来よ く用いられてきたアセトンでも同様である. さらに酵素 活性を低下させない固定剤としては、グルタルアルデヒ ドが極めて優れていることも明らかとなつた. なお, 顆 粒構造の細胞化学的検討でえられた成績は Table 12 に 示した. 核酸,蛋白質,アルカリフォスファターゼなど に関する反応では、特に反応陽性に染め出される顕著な 顆粒構造は認められなかつた. Table 12 でわかるよう に、上記以外の物質の細胞化学的検討では、一虫体あた りに出現する各反応陽性の顆粒構造は、個数、大きさ、 分布などの点で、いずれも AO 顆粒に類似している. ただし、PAS 反応で染め出される顆粒構造は、おもに 虫体周辺部に存在すること、大きさが他よりも小形のも のが多く、個数もややすくないことなどから、他の反応 で認められた顆粒との類似性はやや低い ように 思われ る. なお, あらかじめ AO で染色したものと無染色の ものの間に、反応上の差は無かつた.

次に,細胞化学的手法による重複染色においては,顕微 鏡標本をまず前染色して鏡検の後,ステージよりはずし, 後染色後,再び同一部分を鏡下に探し出し,鏡検する. つまり同一虫体内の同一顆粒を徹底的に追究することに よつて、Laybourn 液による染色で出現するメタクロマ ジー顆粒 (赤色) は, 酸性 フォスファターゼ陽性顆粒 (黒褐色) と一致すること (Fig. 21 & 22), Laybourn 液による染色で出現するメタクロマジー顆粒は, Giemsa 染色により出現するメタクロマジー顆粒(赤色)と一致 すること (Fig. 23 & 24) などの成績をえた. Laybourn 染色と Giemsa 染色の比較の場合には,前染色, 後染色のどちらもメタクロマジーの色調は赤色でまぎら わしいが、前染色で観察した後は、一度アセトンで脱色 処理をおこない、完全に脱色したことを確認してから、 後染色処理に入り, 前染色の影響を除去するよう努め た. さらに、オイルレッドO染色によつて現われる赤色 顆粒の一部は、また酸性フォスファターゼ反応陽性を示 した (Fig. 25 & 26). なお, 酸性フォスファターゼ活 性の消失を危惧しておこなつた対照実験の一つ、すなわ ち,正常マウス肝組織の塗抹標本での Laybourn 法お よび Gomori 法の重複染色でも、実験群と全く同じ操 作の後,同酵素活性の失われていないことを確認した.

AO 顆粒の肥大現象の観察

この観察において、Toxoplasma 虫体内の AO 顆粒が

423

肥大する現象を認めた(Fig. 27 & 28). この現象を示 した *Toxoplasma* 虫体に対しておこなつた酸性フォス ファターゼ検出試験において,同酵素陽性顆粒の肥大も 認め(Fig. 29 & 30),両顆粒の肥大現象が並行してお こることが示された.また,光顕レベルでは,これ以外 の細胞器官で肥大するものは認められなかつた.

5) AO 顆粒に対するリボヌクレアーゼ処理の影響

AO 顆粒に対する RNase の影響を,螢光鏡検によつ て観察した結果,作用後6時間までは,AO 顆粒が認め られ,実験群と無処置群の間に差は認められなかつた. 同一経過を,ピロニン-メチルグリーン染色によつても追 跡したが,実験群と無処置群との間で著差なく,いずれ も前述の時間の範囲 では,細胞質の赤色色調が残存し た.6時間以上 RNase を働かせた群では,変形および 変性虫体の出現が著しくなるので,不適当と考え成績か ら除外した.

考 察

1. AO 顆粒の基礎的観察とその発色条件の検討

螢光顕微鏡法によつて Toxoplasma を観察した報告 が近年現われ始め (Rothstein, 1958; Armstrong & Fulton, 1959; 小山ら, 1962; 牧野, 1964), 同法が Toxoplasma 研究上に極めて優れた方法であることが 知られるようになつた. 著者は, Toxoplasma 虫体の 検出に,同法を導入することを目的として検討を重ね, その細胞質内に,特異な AO 顆粒の出現することおよ びその他の種々興味ある知見をえたので,すでにその予 備的観察の結果を報じた (小山ら, 1962). 本報告は, その後,特に,上記顆粒の性状に強い興味をもつて実施 した一連の研究の結果であるが,まず,顆粒に関する基 礎的観察と発色条件の検討について考察する.

さて、種々検討の結果、AO 濃度1~2万倍、pH 7.0~7.5、室温下が最適発色条件と考えられ、この条件 下では、腹水内栄養型虫体およびシスト型虫体は、とも に1~2分の染色時間で美麗な赤色螢光を示すととも に、両者ともにその細胞質内に AO 顆粒の存在を認め る.また核と細胞質の分別も良好であつた.しかし、シ ストの場合は、同一条件下で染色時間を5~30分と延長 しても、美麗な赤色螢光は認められず橙色にとどまるこ とを確かめた.これは、シスト壁の存在による AO 色 素の流入阻害のほかに、多数虫体の存在による虫体1匹 あたりへの流入色素量の低下も一因となつていると考え られる.そこで、虫体1匹あたりの吸収色素量の多寡が 発色色調に影響を及ぼす可能性を追究してみた.従来、

この点について詳しく触れた報告はあまりなく、Strugger (1949), Robbins & Marcus (1963) らの報告が散 見される程度である.彼等は,螢光発色の強弱は,細胞内 にとり込まれた螢光色素量に比例するのであつて、同一 量の色素に対しては、少数細胞群は多数細胞群に比し、 より強い螢光発色をすると述べている. つまり螢光色調 の強さは、細胞のとり込む色素量に比例するというので ある. 著者の経験でも, 臓器磨砕液や, 遠沈による腹水 内虫体の集虫液などのごとく、一定容積内に含まれる虫 体数あるいは宿主細胞数が多くなると、発色色調が減弱 することを認めた. この場合, これらの液の pH は, いずれも至適発色条件である弱アルカリにおさまること から pH の影響とは思われず、AO 液を多量に追加す ることによつて,発色色調を好転せしめえた. 虫体が好 調な発色を示すためには、1匹あたりある一定量以上の 色素がとり込まれる必要があり、虫数あるいは宿主細胞 の増加は、好適な発色のための AO 必要量に対して、 その量的な不足をきたすものと思われる. したがつて, 実際の染色にあたつては、上述の最適発色条件を考慮し つつ, AO 液をすこしずつ添加していき, 好適発色点を 求めるのが上策であると考える.

さて上述のように簡単な条件設定のみで, Toxoplasma の栄養型虫体, シスト型虫体 あるいはシストなど が,美麗な螢光像を示し,その発色色調の差から宿主側 の組織細胞と区別が可能で ある という事実は,本法が Toxoplasma の感染経路 あるいは宿主体内移行の問題 を追究する上に有効な虫体検出法になりうることを予想 させる.この面の検討結果についての考察は後述する.

次に、AO 染色時間と、虫体感染能の関係についての 成績から、AO 染色後は、虫体の感染能が急激に低下す るので、できるだけ速やかに観察その他の処理を終了せ しめるべきである.また著者の観察の範囲では、発色条 件が適当であれば、虫体の染色後直ちに螢光鏡検して も、常に美しい螢光像を認めることができ、しかもこの 方法によると、極めて低濃度の色素で生体染色が可能で あるから、生体観察が比較的安全におこなえ、活性の高 いうちに十分虫体の観察ができる.牧野(1964)がいう ように、色素液混合後30分ではじめて最高調の色調にな るというのは、著者のいう分別が最良になるという意味 ではなく、赤色色調が最強になるという意味と思われ る.著者の経験では、AO による染色時間が長いと、次 第に赤色色調は強くなるが、逆に細胞質の顆粒構造や核 構造は認めにくくなつて細胞内分別は悪くなり、マウス への感染能も低下するなど,虫体活性の衰退傾向を示す ことが認められている.

2. 感染臓器内虫体の検出

AO 生体染色一螢光顕微鏡法による Toxoplasma の 検出について検討をおこなつたが,まず,感染マウスから 取り出した内臓々器は、おもに腹水から由来する Toxoplasma によつて、その表面が汚染しているおそれがあ る. 動物体内の Toxoplasma の分布を調べる時には、 このように汚染された臓器を用いたのでは正確な成績は えられない. 幸い栄養型虫体やシスト型虫体は、浸透圧 の影響を受けやすい (Stone & Manwell, 1963; 木村, 1967)ので、まず蒸溜水浸漬によつて、臓器内虫体には 影響なく表面付着虫体のみを殺滅することを意図して実 験をおこなつた、その結果、蒸溜水処理によつて、内部 虫体には影響なく、表面付着虫体のみを殺滅できること を知つた、従つて、このような実験の場合には、実施に 先立つて、短時間の蒸溜水処理をおこなうことが望まし い. 蒸溜水をえらんだ理由は、処理後の虫体への影響が すくないと考えたからである. AO 染色後,時間の経過 に伴なつて、赤色螢光が次第に強まつてい くが、 核や AO 顆粒の分別は逆に悪くなつてくる.そしてこれと同 時に、感染能も衰退していくということはすでに述べた が、一方、感染マウス腹水の蒸溜水処理で、腹水内虫体 の AO 顆粒が認めにくくなり、 同虫体のマウスへの感 染能の消失などが認められたとも記載したが、この両現 象を、Robbins & Marcus (1963)の考えを参考にして 次のように推定してみた.

すなわち,前者の場合は,一種の生体染色であつて, AO 染色後しばらくは,AO 顆粒が明らかに認められ, 虫体は生きていたと思われる.この時には,細胞質内に 浸透した AO を,異物として積極的に排除する働きが 認められ,ある構造物内に AO の蓄積がおこつて AO 顆粒の形成をみるようにみえる.

さらに AO 内浸漬が続くと,核や AO 顆粒の分別 が出来ないほどに細胞質内赤色螢光が強まる.これは異 物としての AO を特定の構造内で処理しきれず,細胞 質内全体に拡散するようになつたと理解される.こうし た状態では,AO の毒性が強く虫体に働くことになり, 衰退傾向を示して感染能の低下をまねく結果になると想 像される.後者の場合は,最初の蒸溜水処理で,直ちに虫 体は強い影響を受け,AO が虫体内に浸透できないよう な変性が虫体側におこつたものではないかと思われ,そ のために AO が虫体内に入らず,AO 顆粒の形成がみ られないことになるのではないだろうか.

次に、実験上、感染動物体内から、虫体を検出する必 要があるほか、実際には、Toxoplasma 汚染の疑いが ある肉畜の臓器、筋肉などから検出率よく虫体を発見す る (Krause, 1955; Jacobs et al., 1960 b; 石井ら, 1962; Work, 1967) 必要があり、 大量の 試料を処理で きたら始都合である.この目的のために,消化処理によ つて、大量の材料からできるだけ多くの虫体を分離して マウスに接種し、検出率をたかめようとの試みがすでに なされている (Jacobs et al., 1960 b; Work, 1967) が、ここでは、消化法によつて、まず大量の材料から虫 を集めた後、螢光顕微鏡法によつて虫体の検出をおこな うという処理法を試みた. ここで重要なことは、Toxoplasma 栄養型虫体が環境諸要因に対して抵抗性が極め て弱いという事実 (Jacobs et al., 1952, 1960 a; 柳 沢, 1957;木村, 1967) であり,小山ら (1962) がすで に指摘したように、螢光鏡検によつて生鮮虫体で認めた AO 顆粒が,死虫体あるいは活性低下虫体では認められ なくなり、細胞質全体が、宿主細胞と同色の淡黄緑色と なるため、両者の区別ができず、虫体の検出が困難にな るという事実と合せて考えるならば、螢光鏡検による栄 養型虫体検出に際しては、虫体の活性をできるだけ低下 させないという配慮が必要である.さて,消化法併用によ る虫体検出試験の結果から、栄養型虫体およびそれより やや抵抗性の強いシスト型虫体の両者ともに、トリプシ ンよりペプシンの影響を受けやすく、検出の目的には後 者の使用は望ましくない. トリプシン使用の場合,消化 60分までは確実にマウスへの感染性を有しており、 AO 顆粒も残存していて、虫体は赤色螢光を発し、他の未消 化残渣と明らかに区別しうる.したがつて、大量の村料 から能率よく虫体を検出するには、臓器の磨砕液をトリ プシンで30~60分,37°C で処理後,螢光鏡検すればよ く,遠心集虫すればさらに検出率がたかまるであろう. ただ、職器のトリプシン処理後 AO 染色をおこなう と、一部の虫体で楕円形に変形するものが認められる が、それでも、その特長的な赤色螢光と核の黄緑色螢光 とで残渣との区別は容易である.

さて螢光顕微鏡法による感染臓器内虫体の検出に関しては、すでに小山(1963)、牧野(1964)などの報告が あるが,牧野は,簡易な原虫検索法を求めて同法の活用を 試み、まず固定標本による観察の結果、虫体は一様な銅 赤色に染色され、虫体内の細胞器官は判別しにくくな り、検出ならびに鑑別上、あまり良い結果はえられなか つたとしている.このことは、後にも述べるように、著 者も経験しているところで、固定虫体では虫体が一様に 発色し,顆粒構造は不明瞭となるばかりでなく,宿主側 の細胞も同色に発色するため、宿主細胞と虫体との分別 も困難となる.したがつて固定虫体は、細胞構造の研究 あるいは虫体の検出などのためには不適である. さらに 同氏は,生体螢光処理法による観察結果を記載してお り,その色調,至適発色条件などについては,おおむね著 者の結果と一致しているが, RH 株感染マウス肝と脾の 磨砕液に AO(1:10,000) 液を加えて, 臓器内虫体の 観察をおこなつた結果、全般的に、腹水内虫体における ほど色調が鮮明でなく、螢光度は弱いと述べている.著 者がすでに述べたように、このような場合には、常に虫 体一匹あたりの吸収色素量の多寡が問題で、多数の宿主 細胞や虫体の存在する場合には、好適な発色を呈するた めに必要な色素量に、 不足を き た すおそれのあること を,注意しなければならない.この場合には,被検材料 に対して、大量の色素液を用いて十分攪拌した後、室温 下で観察すれば、臓器内虫体といえども、発色性のたか まることを経験している.

3. AO 顆粒と虫体感染能の関係

著者の考案になる灯芯法を応用すると,生虫体細胞内 の AO 顆粒の存否,その他の細かい構造が精査できる とともに,虫数の算定も正確におこなえて便利であり, ここに始めて,以下に述べるような AO 顆粒と虫体感 染能の関係を詳細に検討することができた.螢光鏡検法 の分野でのこのような観察法は,今日まで知られていな い.観察にあたり灯芯切片をあらかじめ染色しておくの は,虫体の発色を好適な状態に保つためで,もし未染色 なら,虫体側に染着している色素が灯芯切片側に移行す る傾向があり,虫体の発色が悪化するからである.使用 した植物の髄は,ほかに数種あるが,油浸顕微鏡で観察 して一視野内に1ないし2個の区画の現われること,お よび,髄のパラフィン切片作製が可能なことの2条件に 合致するものとして,イ(灯芯)が最適であつた.

AO 顆粒と虫体感染能の関係については、本実験全体 を通じて、時間に伴う顆粒保持虫体の出現率の低下傾向 は、マウスへの虫体感染能の衰退傾向と強い平行関係に あることがわかつた.そして、容易にこの顆粒保持虫体 を発見しうる材料なら、接種によつてほぼ確実にマウス を斃しうるし、逆にこのような虫体を全然認めない材料 なら、マウスを斃すことはほとんどなく、特に遠沈集虫 法の併用によつて、かような虫体の存否をさらに確実に 426

知ることができた.保存液に腹水と生理食塩水の2種を 使つたのは,前者で準自然棲息環境下での,また,後者で 殺トキソプラズマ剤の発見、あるいはトキソプラズマの 抵抗性試験を目的として、腹水成分を洗滌除去する場合 を予想しての虫体の観察を、それぞれ意図したからであ る. その結果は、生理食塩水中での虫体の生残性は一般 に低いといわれているが (Jacobs et al., 1952; 柳沢, 1957), この実験でも、 顆粒構造の消失, 虫体感染能の 低下が、腹水内における場合よりやや急速であることが 認められた.しかも、AO 顆粒保持虫体の出現率の低下 傾向と、マウスへの虫体感染能の衰退傾向との間の強い 平行関係は、依然としてこの場合にも明らかであつたの で、上述のような諸試験における虫体生死の判別に際し ても,この AO 顆粒の消長は利用できるものと考えら れる. Table 8 の虫体保存期間 8 日の欄で,極めて少数 の顆粒保持虫体含有材料で、時に接種マウスの発症致死 の起らない例があつたが、虫体の生死と感染能の有無と は同じものとは考えられないから、この間に若干のずれ が存在しても不思議ではないと考えている.

4. AO 顆粒の本態

AO 生体染色一螢光顕微鏡法によって, Toxoplasma 栄養体に見出される AO 顆粒の本態 に ついては, 従 来, 生細胞質内において RNA と AO との結合物が, 顆粒形態をとった も の との推測がなされてきた (小山 ら, 1962) が, 近年同顆粒が lysosome に相当するとの かなり確実な証拠がえられているので (Koenig, 1963; Robbins & Marcus, 1963; Robbins *et al.*, 1964; Allison, 1967; Dingle & Barrett, 1968; Norrby et al., 1968), この点の検討を加味しつつ, 本顆粒の本態 について追究してみた.

そこでまず, AO による螢光鏡検に加えて, 普通鏡検 および位相差鏡検の併用によつて 明らかに なつたこと は, 螢光鏡検によつて認めた赤色顆粒は,本来実体を備 えた細胞質内構造の一つであるということであり,しか も,すくなくともその一部は, AO 処理前の生虫体内に すでに認められるということである. Robbins & Marcus (1963) は, HeLa 細胞を低濃度 AO で染色後, 螢 光鏡検で AO 小顆粒を認めるのに,位相差鏡検では, 同顆粒を認めないと述べているが,著者の Toxoplasma の場合にはそのよう なこ とはなく,螢光鏡検で認めた AO 顆粒は,必ず位相差鏡検でも認めることができた. 一方,内部の顆粒構造の固定,保存が可能か否かという点 と, 観察の難易という点について多くの固定液について 比較検討してみた結果,この観察の範囲では,オスミック酸蒸気とグルタルアルデヒドで比較的よく顆粒が固定 保存できるし,虫体の収縮変形などもすくないことが明 らかとなり,これら両固定液は,細胞質内顆粒の観察のた めに好適なものと考えられた.さて,このオスミック酸を 含んだ Palade 液で,問題の AO 顆粒も固定保存できる ことがわかつたが,このAO 顆粒は、AO によつて染ま つた実体を備えた細胞質内構造であり,光顕レベルで観 察した場合,AO 処理前にすでに,すくなくともその一 部が認められること,また固定保存も可能であることな どの諸事実は,従来明らかな記載がなかったものであ る.

次に、AO 顆粒の固定保存が確認されたことから、こ れの細胞化学的追究が可能となつた. こうしてえられた 細胞化学的成績をまとめたのが Table 12 に示 してあ る. 従来, Toxoplasma の細胞化学的研究に関する知 見は甚だすくなく、Cross (1947)、阿部 (1958)、Dasgupta & Kulasiri (1959) などが挙げられる程度であつ たが, 近年になって酵素を対象とした細胞化学的研究 や、さらに電顕的細胞化学の分野の業績が数多く報ぜら れるに至つている (Hansson & Sourander, 1968;赤 尾・松林, 1970;赤尾, 1971 a, b). これらの成績のう ちには、著者のものとの一致を思わせる部分もあるが、 本研究のように光顕レベルでの特殊顆粒の追究を目的と したものではないことと, テクニックの異なることなど で、いきなり著者の成績と比較するわけにはいかない. さて、本成績を検討してみると、Giemsa でのメタクロ マジー染色顆粒, PAS 染色顆粒, 脂質染色顆粒, ボル チン顆粒 (異染顆粒),酸性フォスファターゼ陽性顆粒 などは、その数、大きさ、分布などの諸点でたがいによ く類似している. しかもこれらの顆粒は, また AO 顆 粒とも類似し, お互の異同を明ら か に する必要が生じ た. この点を解明するために、いくつかの染色剤を用い て、お互に重複染色を試みてみた. その結果、Giemsa 液やボルチン顆粒の染色剤である Laybourn 液などに よつて出現するメタクロマジー染色顆粒は、酸性フォス ファターゼ陽性顆粒と一致し、さらに脂質染色顆粒の一 部も、酸性フォスファターゼ陽性顆粒と一致する結果を えた. 近年, 一般細胞において酸性フォスファターゼ陽 性顆粒は lysosome に一致し, この lysosome はまた AO での生体染色によつて染め出され,検出が可能であ ると指摘された (Koenig, 1963; Robbins et al., 1964; Allison, 1967). そしてまた, Toxoplasma に関して

も,酸性フォスファターゼおよび lysosome の存在が知 られるようになつてきた (Lund et al., 1966; Hansson & Sourander, 1968; Norrby et al., 1968). 従つて,本 研究において見出したフォスファターゼ陽性顆粒も AO 顆粒に一致し、ともに lysosome と考えてよさそうであ るが、この考えは、本研究において、 Toxoplasmaの場合 でも, Robbins & Marcus (1963) のいうような AO 顆粒 の肥大現象と酸性フォスファターゼ陽性顆粒の現大肥象 との平行関係を確認し,両顆粒が同一物である可能性が 示されたことによつて強められるように思われる. しか しながら、実際には、AO 顆粒が酸性フォスファターゼ 陽性顆粒,つまりlysosome に一致するという直接証明が なされ得なかつたことと、原虫においてのこの種の研究 が未だ十分なされていない点から, AO 顆粒が lysosome に一致するとの結論を出すには、さらに多くの検討が必 要であろう. ここに,酸性フォスファターゼ陽性顆粒が ボルチン顆粒と一致し,また脂質染色顆粒の一部が酸性 フォスファターゼ陽性顆粒と一致するという所見は、今 まで、すくなくとも Toxoplasma で明らかにされたこ とはないが、メタクロマジー染色顆粒またはボルチン顆 粒と呼ばれるもののなかに、酸性フォスファターゼ陽性 顆粒、すなわち lysosome に一致するもののあることを 示唆するものであつて,注目すべきものと思う.また, 脂質染色顆粒のすくなくともその一部に、酸性フォスフ ァターゼが含まれることは興味深いが、その意味につい ては、今後の研究にまたねばならぬだろう.

次に,従来存在した AO は核酸と結びつくとする報 告 (von Bertalanffy & Bickis, 1956;小磯, 1963)の真 偽は一体どうなのだろうか. この点を明らかにするため に,通常自由生活性原虫や培養細胞でおこなわれている ように (Brachet, 1956; 木本, 1961; Fotakis & Stammler, 1963), 生虫体に RNase を作用させて RNA の 消去に努めつつ螢光鏡検してみたが、AO 顆粒の螢光色 調は不変であつた. また,同時におこなつたピロニン-メ チルグリーン染色の色調も変らなかつた.このことは, AO 顆粒が RNA と無関係である可能性を強く示すも のかも知れぬが、一方、 RNase がもともと虫体内に入 らなかつたことや、入つても本生虫体の RNA には作 用しなかつたことなども想定させ、結局明瞭な結果はえ られなかった. Toxoplasma の電顕的観察における現 在までの知見を通覧してみても, ribosome のような RNA に富んだ成分は、ひろく細胞質内に分散してい て、lysosome のように、特定数の顆粒となつて細胞質 内に存在することは考えにくい. この考えは,ピロニン-

メチルグリーン染色で、明らかなピロニン顆粒が出現せ ず、ピロニン染着部位が細胞質内にひろく拡散している という事実によつても支持される.この事実は、ほかに 阿部 (1958) や Dasgupta & Kulasiri (1959) らも認 めている. 上述のように, RNA 成分に富んだ部位が AO 顆粒と一致するとは考えにくいことであるが、螢光 鏡検によつて虫体の染色経過を追つてみると、まず細胞 全体が一様に染まり、その後次第に顆粒構造に色素また はその染着物質が分離してくるようにみえる. このこと は、Robbins & Marcus (1963) や Robbins et al. (1964) も同様に述べている. この細胞質全体が一様に 染まつた時に,ただ AO が細胞質内全体に拡散してい るだけなのかも知れぬし、また従来の報告にみられるよ うに、AO が RNA とある程度の結びつきをもつてい, るものかも知れぬ.ともあれ,すくなくとも, AO 顆粒 が,特に RNA 成分からなるという確かな証拠は今の ところ存在しない.

最後に, Dasgupta & Kulasiri (1959)は, Toxoplosma 虫体の stage によつて細胞化学反応に差異ありとし, また, Norrby et al. (1968)は, HeLa 細胞に侵入後間も ない Toxoplasma 虫体では、AO 顆粒を示すものはす くないが、 同細胞内で 増殖後の 遊離虫体の 大部分で、 AO 顆粒を認めたとして、同顆粒の存否は虫体の stage と深い関連のあることを示唆した.一方,牧野(1964) は、至適発色条件下で、ほとんどの Toxoplasma 虫体 が銅赤色を示すのに、一部に終始細胞質が青緑色を示 し、かつ運動性をもつた虫体を認め、その本態は不明で あるといい,AO 顆粒をもたぬ虫体の存在を指摘してい るが、こうした虫体は、Norrby et al. のいうような宿 主細胞に侵入後間もない虫体の、鏡検処理に際して、宿 主細胞から機械的に遊離せしめられたものを、たまたま 観察したものかも知れない、ともあれ、この面の検討は 目下ほとんどなされておらず、今後の研究にまたねばな らない.

むすび

アクリジンオレンジ(AO) 生体染色一螢光顕微鏡法 を用いて, Toxoplasma 感染マウスからえた T. gondii 細胞質内に見出される AO 顆粒を検討した結果, 次の 成績をえた.

1) AO 顆粒の基礎的観察とその発色条件の検討

a) AO 顆粒のための最適発色条件は,室温下で,腹 水内および 臓器内の 栄養型虫体と 脳内シスト型虫体 の 両者ともに, AO 濃度1~2万倍, pH 7.0~7.5, 染色 時間は、栄養型虫体で1~2分、シスト型虫体で5~30 分、また、虫数や宿主細胞数に応じて AO 液量の増減 をはかることなどである.

b) 両型虫体は,上記最適発色条件下では,ともに, 細胞質は赤色に,核は黄緑色に発色し,かつ細胞質の赤 色は,おもにそのなかに含まれる AO 顆粒の存在によ る.一方,シストは,同条件下では長時間染色しても橙 色にとどまる.また,いずれの場合でも,この条件下で は,宿主側の組織細胞はおおむね黄緑色に発色するのみ であるのに,栄養型およびシスト型虫体は赤色三日月 型,またシストは橙色大型球体として見出されるから, いずれの型の虫体も検出は容易である.

c) AO 染色後は、虫体感染能が急激に低下する.

2) 感染臓器内虫体の検出

a) 両型虫体は、ともに蒸溜水の影響を受け易く、同処理によつて、AO 顆粒の色調および虫体感染能の急激な衰退を認める.従つて、臓器内虫体のみを実験に供する場合には、臓器の短時間蒸溜水浸漬によつて、おもに腹水内虫体からなると思われる臓器表面の汚染虫体の除去が可能である.

b) 感染臓器のトリプシン処理後螢光鏡検した結果, 両型虫体は、ともに消化処理60分までは、確実に AO 顆 粒およびマウスへの感染能を有していた. 従つて,消化 後、遠沈法の併用による螢光鏡検により、大量の材料を扱 うことが可能で、虫体検出率の大幅な向上が期待される.

3) AO 顆粒と虫体感染能の関係

a) 灯芯切片内の細胞間隙内に,感染マウス腹水内栄 養型虫体を封入するという新法によつて,虫体の動きを 止め,AO顆粒の観察と虫数算定ができた.

b) 同上虫体の螢光鏡検に,遠沈法および灯芯法を併用し,時間に伴う AO 顆粒保持虫体の出現率低下傾向,すなわち,AO 顆粒の衰退過程と,マウスへの感染能のそれとの間に明らかな平行関係のあることを確認した.従つて,AO 顆粒保持虫体の存否をもとに,接種材料の感染能の有無を推定することも可能である.

4) AO 顆粒の本態

a) 感染マウス腹水内虫体にみられる AO 顆粒構造 のすくなくともその一部は,染色前の生虫体内にすでに 認められるようで, AO によつて強染する性質がある.

b) AO 顆粒は固定保存が可能である.

c) 細胞化学的検討では,酸性フォスファターゼ染色,ボルチン染色,脂質染色,Giemsa 液によるメタクロマジー染色などで,AO 顆粒に類似性の高い顆粒構造が染め出された.

d) 細胞化学的テクニックによる重複染色で、終始同 一顆粒を追究した結果、酸性フォスファターゼ陽性顆 粒、ボルチン顆粒検出のための Laybourn 液で染め出 されるメタクロマジー顆粒、Giemsa 染色で出現するメ タクロマジー顆粒、オイルレッドO染色顆粒の一部など は、すべて同一物であることを認めた。

e) AO 顆粒の肥大現象と、それと同一条件下における酸性フォスファターゼ陽性顆粒の肥大現象との間に、強い平行関係のあることを確認し、両顆粒が同一物である可能性を見出した.

f) 上記の諸性状に、さらに、顆粒の大きさ、形状、 出現個数、分布状況などを加味して考えるとともに、文 献的考察をおこなつた結果、AO 顆粒を lysosome 様性 状を強くもつた顆粒と考えた。

本論文の要旨は,第31,32,34,35回日本寄生虫学会 総会(1962,1963,1965,1966)および第26回同学会東 日本支部大会(1966)において発表した.

稿を終わるにあたり, 懇切なる御指導, 御校閲を賜わ った前国立予防衛生研究所長小宮義孝博士, 同所寄生虫 部長石崎達博士, 新潟大学医学部大鶴正満教授, 東京慈 恵会医科大学小林昭夫教授に深謝いたします. また多く の御援助をいただいた国立予防衛生研究所寄生虫部の諸 兄姉にも併せて謝意を表します.

文 献

- 阿部道夫(1958): Toxoplasma gondii の細胞 化学的検索並に sulfa 剤投与後における虫体の 細胞化学的変化.慶応医学, 35, 193-208.
- 赤尾信吉・松林久吉(1970): Toxoplasma における acid phosphatase の電子顕微鏡による局在性について、寄生虫誌, 19, 372-373.
- 3)赤尾信吉(1971 a):トキソプラスマの2~3の 脱水素酵素の電子顕微鏡的細胞化学による証明. 寄生虫誌, 20, 379-385.
- 赤尾信吉(1971 b):原虫におけるライソゾーム. 細胞、3,28-29.
- Allison, A. (1967) : Lysosomes and disease concerning the role of bodies in the living cell that contain digestive enzymes. Scientific American, 217, 62-73.
- 新井博・斉藤博・野村隆(1958): HeLa 細胞に 対する Toxoplasma の感染実験. 日新医学, 45, 663-669.
- Armstrong, J. A. & Fulton, J. D. (1959): Observations on the pathology of toxoplasmosis in the cotton rat. British J. Exp. Path., 40, 225-231.
- 8) Brachet, J. (1956) : Further observations on

the action of ribonuclease on living amoebae. Exp. Cell Res., 10, 255-256.

- Cook, M. K. (1958) : The inhibitory effect of adenine and related compounds on the proliferation of *Toxoplasma gondii* in tissue culture. J. Parasit., 44, 274-279.
- Cross, J. B. (1947) : A cytologic study of *Toxoplasma* with special reference to its effect on the host's cell. J. Inf. Dis., 80, 278– 296.
- Dasgupta, B. & Kulasiri, C. (1959) : Some cytochemical observations on *Toxoplasma* gondii. Parasit., 49, 594-600.
- 12) Dingle, J. T. & Barrett, A. J. (1968) : The uptake of biologically active substances by lysosomes. Bioch. J., 109, 19 P.
- 13) Dubey, J. P., Miller, N. L. & Frenkel, J. K. (1970) : The *Toxoplasma gondii* oocyst from cat feces. J. Exp. Med., 132, 636-662.
- 14) Fotakis, N. S. & Stammler, A. (1963) : Vergleichende Untersuchung der Wirkung von Ribonuclease auf Hela-und FL-Zellkulturen. Arch. Gesamte Virusforschung, 14, 113-122.
- 15) Frenkel, J. K., Dubey, J. P. & Miller, N. L. (1970) : *Toxoplasma gondii* in cats : Fecal stages identified as coccidian oocysts. Science, 167, 893–896.
- 16) Gomori, G. (1950) : An improved histochemical technic for acid phosphatase. Stain Tech., 25, 81-85.
- Gomori, G. (1952) : Microscopic histochemistry. Principles and practice. Univ. of Chicago Press.
- 18) Hansson, H. & Sourander, P. (1968) : Ultrastructural demonstration of lysosomes in *Toxoplasma gondii*. Acta Path. Microbiol. Scand., 74, 431-444.
- Hutchison, W. M. (1965) : Experimental transmission of *Toxoplasma gondii*. Nature, 206, 961–962.
- (20) Hutchison, W. M., Dunachie, J. F., Siim, J. Chr. & Work, K. (1970) : Coccidian-like nature of *Toxoplasma gondii*. British Med. J., 1, 142-144.
- 21) 石井俊雄・小林昭夫・小山力・熊田三由・小宮 義孝(1959):トキソプラスマに関する研究(2) 実験動物としての gpc 系マウスの 週令および 性別による感受性の差について、寄生虫誌, 8, 843-848.
- .22) 石井俊雄・小林昭夫・小山力・熊田三由・小宮 義孝・深沢平・斉藤正度・奥水馨(1962): トキ ソプラスマに関する研究(4) 豚肉からの虫体 分離試験、寄生虫誌, 11, 184-191.
- 23) Jacobs, L., Jones, F. E. & Melton, M. L.

(1952) : The survival of *Toxoplasma gondii* in various suspending media. J. Parasit., 38, 293-297.

- 24) Jacobs, L., Remington, J. S. & Melton, M. L. (1960 a) : The resistance of the encysted form of *Toxoplasma gondii*. J. Parasit., 46, 11-21.
- 25) Jacobs, L., Remington, J. S. & Melton, M. L. (1960 b) : A survey of meat samples from swine, cattle, and sheep for the presence of encysted *Toxoplasma*. J. Parasit., 46, 23-28.
- 26) 木本哲夫(1961): 生細胞に対するリボヌクレア ーゼ (RNase I) の作用―形態学的・細胞化学 的研究―. 細胞化学シンポジウム, 11, 163-181.
- 27) 小林昭夫・石井俊雄・小山力・熊田三由・小宮 義孝(1959):トキソプラスマに関する研究(1) 実験マウスの系統の検討. 寄生虫誌, 8, 664-668.
- 28) Koenig, H. (1963) : Vital staining of lysosomes by acridine orange. J. Cell Biol., 19, 87 A.
- 29) 小磯謙吉(1963): 螢光色素アクリジン・オレンジによる核酸染色法一血液細胞学への応用一. 医学のあゆみ,44,151-152.
- 30) 小山力・小林昭夫・石井俊雄 ・ 熊田三由・小宮 義孝・小机弘之(1962): トキソプラスマに関す る研究(3) 螢光顕微鏡による虫体の観察.寄 生虫誌,11,178-183.
- 31) 小山力(1963): トキソプラスマに 関 す る 研究
 (11) 螢光顕微鏡法による 感染臓器内虫体の 検 出について、寄生虫誌, 12, 287-288.
- 32) Koyama, T. & Ilardi, A. (1968) : Cytochemical studies on the leptomonad form of *Leishmania donovani*. Parassitologia, 10, 17-32.
- 33) Krause, A. C. (1955) : Toxoplasma in tissues of man and pets, J. Parasit., 41, 545-548.
- 34) 熊沢正夫(1956): 植物解剖学実験法. 生物学実 験法講座 IVG, 中山書店.
- 35) Kurnick, N. B. (1955) : Pyronin Y in the methyl-green-pyronin histological stain. Stain Tech., 30, 213-230.
- 36) Laybourn, R. L. (1924) : A modification of Albert's stain for the diphtheria bacillus. J. Am. Med. Asso., 83, 121.
- 37) Lillie, R. D. (1965) : Histopathologic technic and practical histochemistry. 3rd Ed., Mc-Graw-Hill Book Comp., New York.
- 38) Lund, E., Hansson, H., Lycke, E. & Sourander, P. (1966) : Enzymatic activities of *Toxoplasma gondii*. Acta Path. Microbiol. Scand., 68, 59-67.
- 39)牧野毅(1964): 螢光顕微鏡法によるトキソプラ ズマの観察.阪市大医雑, 13, 297-319.

- 40)本村一郎(1967): Toxoplasma gondii の生物学 的研究.第1報. Toxoplasma gondii の各種 理化学的条件に対する抵抗性に関する実験. 熱 帯医学, 9, 201-225.
- 41) Norrby, R., Lindholm, L. & Lyck, E. (1968) : Lysosomes of *Toxoplasma gondii* and their possible relation to the host-cell penetration of *Toxoplasma* parasites. J. Bact., 96, 916– 919.
- Palade, G. E. (1952) : A study of fixation for electron microscopy. J. Exp. Med., 95, 285-298.
- 43) Pearse, A. G. E. (1961) : Histochemistry, theoretical and applied. 2nd. Ed., J. & A. Churchill, Ltd., London.
- 44) Robbins, E. &. Marcus, P. I. (1963) : Dynamics of acridine orange-cell interaction. I. Interrelationships of acridine orange particles and cytoplasmic reddening. J. Cell Biol., 18, 237-250.
- 45) Robbins, E., Marcus, P. I. & Gonatas, N. (1964) : Dynamics of acridine orange-cell interaction. II. Dye-induced ultrastructural changes in multivesicular bodies (acridine orange particles). J. Cell Biol., 21, 49-62.
- Rothstein, N. (1958) : Vital staining of blood parasites with acridine orange. J. Parasit., 44, 588-594.
- 47) Rothstein, N. & Diamond, L. S. (1959) : Vital staining of parasitic protozoa for dark-field microscopy. J. Protozool., 6 (Suppl.), 8.
- 48) Sheffield, H. G. & Melton, M. L. (1970) : *Toxoplasma gondii* : The oocyst, sporozoite, and infection of cultured cells. Science, 167,

892-893.

- 49) Stone, W. B. & Manwell, R. D. (1963): Viability of the proliferative form of *Toxo-plasma* in distilled water. J. Parasit., 49, 1036-1037.
- 50) Strugger, S. (1949) : Fluoreszenzmikroskopieund Mikrobiologie. Schaper, Hannover.
- 51) 武谷健二・徳永徹・萩原義郷(1959): 細菌の異 染顆粒に関する研究. 九大結研紀要, 5, 409-415.
- 52) 常松之典・柳沢勝治・直江敏郎・斉藤正雄・小 倉学・仁木和三郎・美甘正文(1958): トキソプ ラスマの研究Ⅲ. 犬の実験的トキソプラスマ症 に就て.東京医事新誌, 75, 191-196.
- 53) von Bertalanffy, L. & Bickis, I. (1956) : Identification of cytoplasmic basophilia (RNA) by fluorescence microscopy. J. Histochem. Cytochem., 4, 481-493.
- 54) Wachstein, M. & Pisano, M. (1950) : A new staining technique for polar bodies. J. Bact., 59, 357-360.
- 55) Work, K. (1967) : Isolation of *Toxoplasma gondii* from the flesh of sheep, swine, and cattle, Acta Path. Microbiol. Scand,. 71, 296-306.
- 56) 柳沢勝治(1957): トキソプラスマの研究Ⅱ.各 種メジアにおけるトキソプラスマの生残性及び 保存用メジアムについて.東京医事新誌,74, 459-462.
- 57) Yasuma, A. & Ichikawa, T. (1953) : Ninhydrin-Schiff and alloxan-Schiff staining. A new histochemical staining method for protein. J. Lab. & Clin. Med., 41, 296-299.

430

Abstract

STUDIES ON THE ACRIDINE ORANGE GRANULES FOUND IN THE CYTOPLASM OF *TOXOPLASMA GONDII* BY MEANS OF FLUORESCENCE MICROSCOPY

TSUTOMU KOYAMA

(Department of Parasitology, National Institute of Health, Tokyo 141, Japan)

Red granules within the cytoplasm of *Toxoplasma gondii* recognizable by acridine orange (AO) vital fluorescent staining were studied for a possible usefulness as an index to know the viability of the parasite. The biological and cytochemical natures of the granules were also studied. The results obtained were as follows:

1) Optimum conditions for the fluorescence of AO granules.

The optimum conditions for the fluorescence of the granules were AO concentrations ranging from 1:10,000 to 1:20,000 dilution, pH values between 7.0 and 7.5 under room temperature for the RH trophozoites and the parasites liberated from Beverley cyst. Optimum time of exposure of the organisms to AO was 1-2 minutes for the trophozoites and 5-30 minutes for the cysts. Under the favorable condition, the nucleus of the trophozoite and the parasite liberated from the cyst fluoresces greenish yellow, while the cytoplasm red, the tint of which being due to many AO granules. The cysts are orange in colour even after the staining for a long time. By the use of AO fluorescent staining technique, the parasites could easily be differentiated from host cells; the trophozoites as red crescent or the cysts as orange ball in sharp contrast to greenish yellow host cells.

2) Detection of *Toxoplasma* in the tissue using AO fluorescence microscopy.

The parasites, either trophozoite or cyst, were destroyed rapidly in the distilled water, and the fading of red AO granules and the decrease of the infectivity of the parasites to mice were recognized. Both RH trophozoites and the parasites liberated from Beverley cyst still retained their infectivity to mice and AO granules even after 1 hr-exposure to 1% trypsin solution. Thus, the combined application of trypsin digestion technique and the AO fluorescence microscopy makes it much easier to detect viable toxoplasmas in a large amount of tissue material than use of either technique alone.

3) Relationship between the AO granules and infectivity of the parasites to mice.

For detailed observation on the AO granules within the parasite, it was necessary to settle the parasite in a limited space of a microscopic field. For this purpose, the use of a transversesection of the pith of rush (*Juncus effusus* var. *decipiens*) was proved to be useful as the settling bed for the parasite, the parasites placed onto the bed being well fixed within the intercellular space of the rush. By the application of this new technique, it was confirmed that the disappearance of the parasites with AO granules was associated with a marked drop in the infectivity to the mice. Thus, it is possible to discriminate fluoromicroscopically the viablemicroorganisms from the nonviable by the AO fluorescence microscopy.

(67)

4) Cytochemical nature of the AO granules.

It has been shown that a granular structure is found in the viable toxoplasmas by a light microscopic observation already before staining with AO and the dye is concentrated within the structure to form AO granules when the parasites are immersed in the dye solution. Moreover, the study of fixatives upon AO granules proved that the granules can be fixed and preserved. Several granular structures closely similar to AO granules were found as a result of the cytochemical investigation, e.g., acid phosphatase-positive granules detected by Gomori's method, metachromatic bodies visible after Giemsa's staining or Laybourn's staining for volutin granules and some of fat granules stained with Oil Red O. All these granules demonstrated were proved to be the same one another as a result of successive applications of any two of the different cytochemical methods to the parasite. When parasites were stained with high concentrations of AO for short time and incubated in a dye-free medium, AO granules were led to marked hypertrophy. On the other hand, acid phosphatase-positive granules also grew up under the same treatment. The results mentioned above may suggest that the AO granules in the parasites may be identical to lysosomes.

-432

433

Figs. 1, 9-30. The trophozoites obtained from the peritoneal fluid of mouse infected with *Toxoplasma* gondii (the RH strain).

- Fig. 2. The trophozoites in the liver of mouse infected with Toxoplasma gondii (the RH strain).
- Figs. 3-8. The cysts and the parasites liberated from cysts obtained from the brain of mouse infected with *Toxoplasma gondii* (the Beverley strain).
- Fig. 1. Fluorescence micrograph of acridine orange (AO) granules found in the trophozoites.
- Fig. 2. Fluorescence micrograph of the trophozoites in the crushed liver tissue of mouse.
- Fig. 3. Fluorescence micrograph of a cyst isolated from the brain of mouse which was exposed to distilled water for 30 minutes. Individual parasite in the cyst is clearly seen.
- Fig. 4. Light micrograph of the same cyst that is shown in Fig. 3.
- Fig. 5. Fluorescence micrograph of a cyst isolated from the homogenated brain of mouse which was exposed to distilled water for 1 hr. The internal feature of the cyst is obscure.
- Fig. 6. Light micrograph of the same cyst that is shown in Fig. 5.

- Fig. 7. Fluorescence micrograph of the parasites released from cysts digested in 1 % trypsin for 1 hr.
- Fig. 8. Light micrograph of the same parasites that are shown in Fig. 7.

434

- Fig. 9. Fluorescence micrograph of the parasites enclosed in the intercellular space in the cross section of the pith of the rush (*Juncus effusus* var. *decipiens*). A. parasite has AO granules in the cytoplasm, whereas others not.
- Fig. 10. Light micrograph of the same parasites that are shown in Fig. 9.
- Fig. 11. Fluorescence micrograph of the trophozoites exposed to physiological saline for 3.5 days. They were collected by centrifugation. Only one trophozoite has AO granules in the cytoplasm but others not.
- Fig. 12. Light micrograph of the same trophozoites that are shown in Fig. 11.

Fig. 13. Light micrograph of unstained parasites. The granules are visible in the cytoplasm. Fig. 14. Light micrograph of the same parasites that are shown in Fig. 13. The same granules were

- Fig. 15. Fluorescence micrograph of AO-stained parasites. Note AO granules clearly shown in the cyto-
- plasm of two parasites which are located in the center of this figure. Fig. 16. Light micrograph of the same parasites that are shown in Fig. 15. Same AO granules are also
- Fig. 17. Phase contrast micrograph of the granular structure detected in the cytoplasm of trophozoites.
- Fig. 18. Light micrograph of the same granular structure that is shown in Fig. 17.

- Fig. 19. Light micrograph of the AO-stained parasites. AO granules are visible in the cytoplasm.
- Fig. 20. Light micrograph of the same parasites that appear in Fig. 19. In this case, the parasites are fixed with Palade's fixative. Same granules are also visible in the cytoplasm. It is clear that AO granules can be fixed and preserved as seen from Figs. 19-20.
- Fig. 21. Light micrograph of the parasites stained by Laybourn's method for volutin granules. Cytoplasmic granules are stained red.
- Fig. 22. Light micrograph of the same parasites as those shown in Fig. 21. The staining with Laybourn's reagents was followed by the staining with Gomori's reagents and same granules were also stained blackish brown for acid phosphatase, suggesting identity of metachromatic bodies with acid phosphatase-positive granules.
- Fig. 23. Light micrograph of the parasites stained with Giemsa's solution. Cytoplasmic granules are metachromatically stained red.
- Fig. 24. Light micrograph of the same parasites as those shown in Fig. 23. The staining with Giemsa's mixture was followed by the staining with Laybourn's reagents. Same granules were also meta-chromatically stained red. It was proved that metachromatic granules visible after Giemsa's staining are identical with those visible after Laybourn's staining.

- Fig. 25. Light micrograph of the parasites stained with Oil Red O. Cytoplasmic granules are stained reddish orange.
- Fig. 26. Light micrograph of the same parasites that are shown in Fig. 25. The staining with Oil Red O was followed by the staining with Gomori's reagents and a part of Oil Red O-stained granules showed the acid phosphatase activity.
- Fig. 27. Fluorescence micrograph of trophozoites exposed to AO.
- Fig. 28. Fluorescence micrograph of trophozoites lead to marked hypertrophy of the AO granules in growth medium. AO granules have markedly increased in size.
- Fig. 29. Light micrograph of trophozoites stained for acid phosphatase. Black dots in the cytoplasm represent sites of enzyme activity.
- Fig. 30. Light micrograph of the trophozoites received the same treatment that the parasites shown in Fig. 28 did and stained for acid phosphatase. Acid phosphatase-positive granules have also markedly increased in size. The AO granules should be identical with the acid phosphatase-positive granules, because there is an exact parallelism on hypertrophy between both granules.